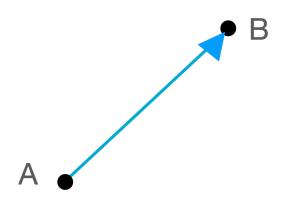
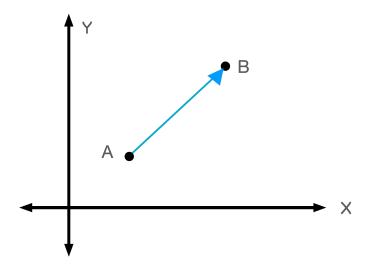


Geometric Description of a Vector \vec{v}

$$\vec{v} = \vec{AB}$$

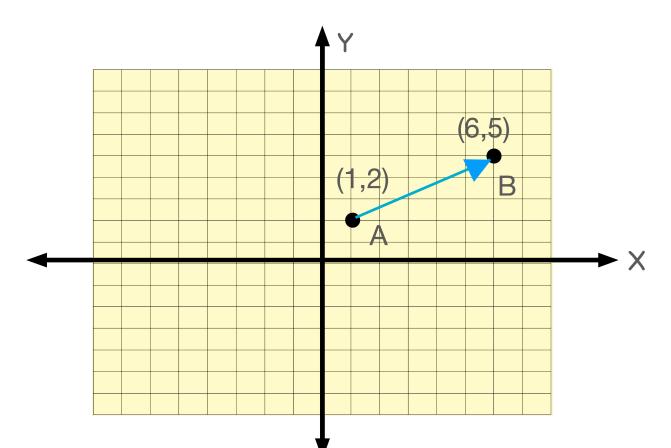


We call A an initial point and B a terminal point with the magnitude represented as $|\vec{v}|$ and direction represented by an angle θ .

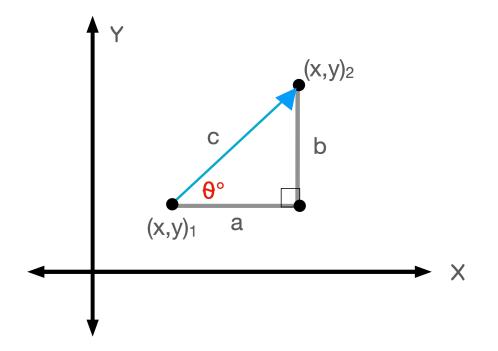


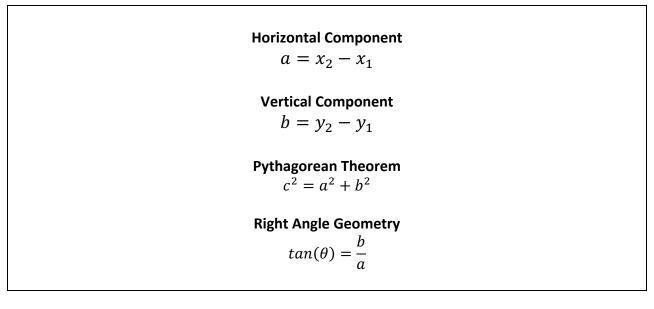
We can plot points A and B to draw a vector in cartesian coordinates.

Example- Let A = (1,2) and B = (6,5) to determine vector $\vec{v} = \vec{AB}$



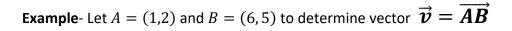
We can determine the **magnitude (length)** of our vector and it's **direction** θ by considering two quantities. The horizontal component of a vector and the vertical component of a vector.

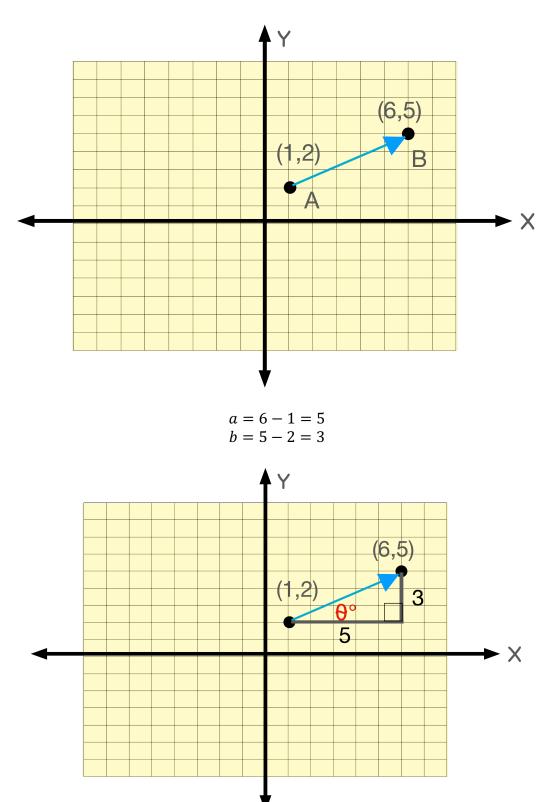




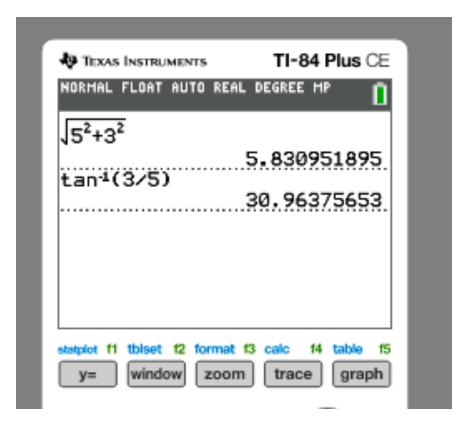
Component From of Vector $\vec{v} = \overrightarrow{AB}$

$$\vec{v} = \langle x_2 - x_1, y_2 - y_1 \rangle = \langle a, b \rangle$$





V

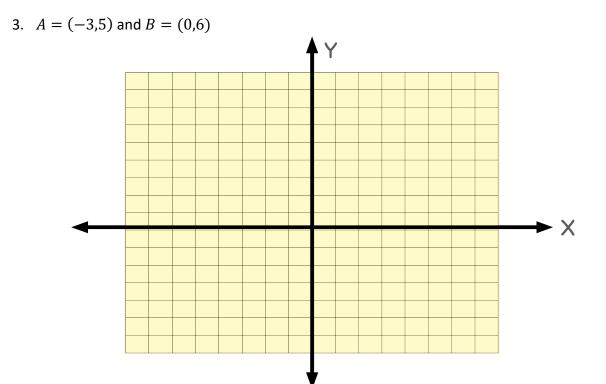


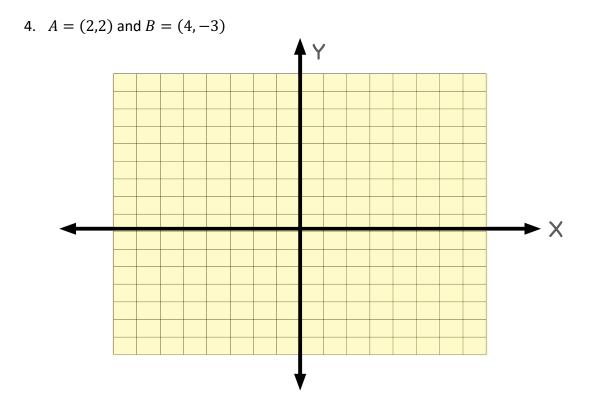
$$c = \sqrt{5^2 + 3^2} \approx 5.8$$
; Magnitude $|\vec{v}| \approx 5.8$
 $\theta = \tan^{-1}\left(\frac{3}{5}\right) \approx 31^\circ$; Direction $\theta \approx 31^\circ$
 $\vec{v} = < 5,3 >$

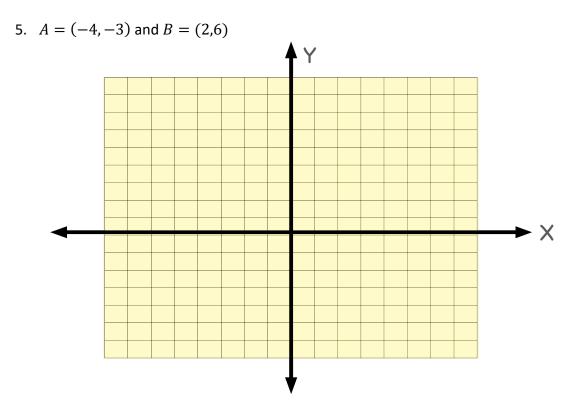
Sketch the following Vectors and determine the magnitude, direction, and component form.

1.
$$A = (0, -2)$$
 and $B = (4, 2)$

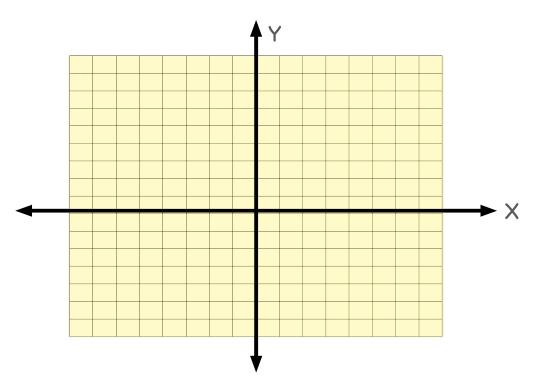
Y ►X 2. A = (4,1) and B = (-1,5)Y ► X







6.
$$A = (3, -5)$$
 and $B = (5, -4)$



Vector Properties

Let $\vec{v} = \langle a_1, b_1 \rangle$ and $\vec{w} = \langle a_2, b_2 \rangle$ be two vectors in component form. Then we have the following properties.

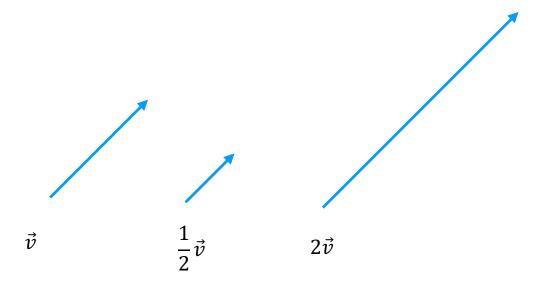
1. Vector Addition $\vec{v} + \vec{w} = \langle a_1 + a_2, b_1 + b_2 \rangle$

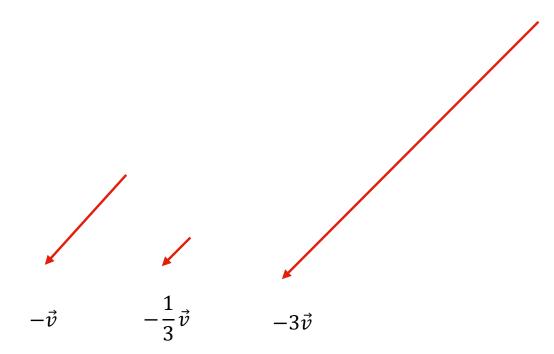
We can perform vector addition in free hand mode by using the terminal point with vector \vec{v} with the initial point of vector \vec{w} to create a vector sum called the resultant vector, $\vec{v} + \vec{w}$



2. Scalar Multiplication of a Vector $c\vec{v} = c < a, b > = < ca, cb >$ where $c \neq 0$

Consider the free hand descriptions of the following vectors.





3. Vector Subtraction $\vec{v} - \vec{w} = < a_1 - a_2$, $b_1 - b_2 >$

Example $\vec{v} = < 2, -3 > \text{and} \ \vec{w} = < 1, 5 >$

Determine the following vectors.

- 1. $\vec{v} + \vec{w}$
- 2. $\vec{v} \vec{w}$
- 3. 3*v*
- 4. $-4\vec{w}$
- 5. $3\vec{v} 4\vec{w}$

Determine the magnitude of the following vectors.

- 6. $|\vec{v} + \vec{w}|$
- 7. $|\vec{v} \vec{w}|$
- 8. |3*v*|
- 9. $|-4\vec{w}|$
- 10. $|3\vec{v} 4\vec{w}|$

Def- Zero Vector The vector $\overline{\mathbf{0}} = \langle 0, 0 \rangle$ is called the **Zero Vector**.

Vector Properties

Properties of Vectors

Vector addition	Multiplication by a scalar
$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$	$(c+d)\mathbf{u}=c\mathbf{u}+d\mathbf{u}$
$\mathbf{u} + 0 = \mathbf{u}$	$(cd)\mathbf{u} = c(d\mathbf{u}) = d(c\mathbf{u})$
$\mathbf{u} + (-\mathbf{u}) = 0$	$1\mathbf{u} = \mathbf{u}$
Length of a vector	$0\mathbf{u} = 0$
$ c\mathbf{u} = c \mathbf{u} $	c 0 = 0

Def- Let vector $\overline{v} = \langle a, b \rangle$. The vector \overline{v} is a called the **Unit Vector**, if $|\overline{v}| = 1$

The following are examples of Unit vectors.

$$\overline{m{v}}=\langle rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
angle$$
 where $|ar{v}|=1$

$$\bar{\iota} = \langle 1, 0 \rangle$$
 where $|\bar{\iota}| = 1$

$$\overline{J} = \langle 0, 1 \rangle \overline{J} = \langle 0, 1 \rangle$$
 where $|\overline{J}| = 1$

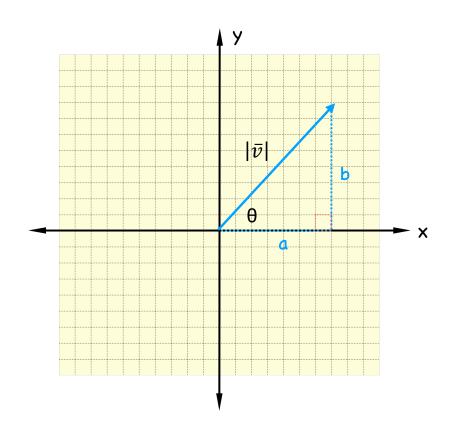
$$\overline{m{w}}=\langle rac{3}{5},-rac{4}{5}
angle$$
 where $|\overline{w}|=1$

We can write any vector $\overline{v} = \langle a, b \rangle$ with unit vectors!

Vectors In Terms of \bar{i} and \bar{j}

$$\overline{\boldsymbol{v}} = \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{a}\overline{\boldsymbol{\iota}} + \boldsymbol{b}\overline{\boldsymbol{j}}$$

Horizontal and Vertical Components of a Vector $\,\overline{v}=\langle a,b
angle=aar{\iota}+bar{j}$



Let a represent the horizontal component and b represent the vertical component.

Then $a = |\overline{v}| cos(\theta)$ and $b = |\overline{v}| sin(\theta)$ such that $\overline{v} = \langle a, b \rangle = |\overline{v}| cos(\theta)\overline{\iota} + |\overline{v}| sin(\theta)\overline{j}$ $tan(\theta) = \frac{b}{a}$ Write the following vectors in terms of \bar{i} and \bar{j} , and determine its magnitude, and direction θ in whole degrees.

- 1. $\overline{\boldsymbol{v}} = \langle 3, 8 \rangle$ 2. $\overline{\boldsymbol{v}} = \langle -2, 1 \rangle$
- 3. $\overline{v} = \langle 6, -4 \rangle$
- 4. $\overline{\boldsymbol{v}} = \langle 0, 2 \rangle$
- 5. $\overline{v} = \langle -5, -2 \rangle$
- 6. $\overline{\boldsymbol{v}} = \langle 1, -1 \rangle$
- 7. $\overline{\boldsymbol{v}} = \langle 6, -4 \rangle$

Determine the **horizontal** and **vertical components** of the vector and write in terms of \bar{i} and \bar{j} .

8. $|\bar{v}| = 4 \text{ and } \theta = 30^{\circ}$ 9. $|\bar{v}| = 25 \text{ and } \theta = 100^{\circ}$ 10. $|\bar{v}| = \sqrt{3} \text{ and } \theta = 135^{\circ}$ 11. $|\bar{v}| = 200 \text{ and } \theta = -60^{\circ}$ 12. $|\bar{v}| = 1 \text{ and } \theta = 225^{\circ}$ 13. $|\bar{v}| = 2\sqrt{5} \text{ and } \theta = -120^{\circ}$

Determine the **resultant vector**, its **magnitude**, and **direction** in whole degrees.

14.
$$\overline{\boldsymbol{v}} = 4\overline{\iota} - 2\overline{j}$$
 and $\overline{w} = 2\overline{\iota} + \overline{j}$
15. $\overline{\boldsymbol{v}} = 3\overline{\iota} + 5\overline{j}$ and $\overline{w} = -6\overline{\iota} + 2\overline{j}$
16. $\overline{\boldsymbol{v}} = -\overline{\iota} + 6\overline{j}$ and $\overline{w} = -4\overline{j}$
17. $\overline{\boldsymbol{v}} = \overline{\iota} + 4\overline{j}$ and $\overline{w} = -5\overline{j}$ and $\overline{u} = 8\overline{\iota} - \overline{j}$
18. $\overline{\boldsymbol{v}} = -2\overline{\iota} - 6\overline{j}$ and $\overline{w} = 4\overline{\iota} + \overline{j}$ and $\overline{u} = 3\overline{\iota} - 2\overline{j}$