Surface Area for a Solid of Revolution

We start with a smooth continuous curve y = f(x) over an interval [a, b]
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Rotate it about the x-axis.

We partition the interval [a, b] into n-subintervals of equal length Ax as before.
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We now focus on the ith sub-interval [x;_;, x;] and let ds = |P;_,P;| represent

the arc length along the curve from P;_; to P;.
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A more detail description of what we obtain by rotating the curve y = f(x) about
the x-axis is the ds line segment outlines a conical shape described below in red.
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It resembles a coffee cup sieve that is used to keep your hands from getting burned
while holding a hot cup of coffee.




For very small Ax, and consequentially As, our conical shape resembles a cylindrical
shape that can be cut along its side to create a rectangle, while ignoring the top
and bottom of the cylinder. This is known as the lateral (side) surface area of the

cylinder.
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bein [x;_{,x;] fori = 1ton.
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We will also be letting x;




The Geometry can be used to fit our model in computing the lateral (side) surface
area of a solid of revolution in letting r = f(x;) and the h = ds.
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The lateral surface area can be approximated by doing the following summation.
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Now, as n = oo our approximation becomes exact as we obtain a Riemann Sum.
n
SA = lim Z 2nf(x;) As
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An important potion of the formula is the term ds as your integrand f(x) is a
function of x and is a different variable.
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SA=f:21tyds whereds=,/1+[j—ﬂ dx or ds = 1+[3—;] dy

sa=J" 2nf(x)\/1 +IfPdx ; SA= [ 2my /1 + [Z—ﬂz dx

Similarly, we can describe a curve as x = g(y) over ¢ < y < d and the formula for
the surface are becomes the following.

b doc1?
SA = j 2rryds ; SA = j 2y |1+ [—] dy
a dy

Rotate about the y-axis.
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