1	0.231	14	0/4 0:040	0.059
2	0.115	15	0.479	
3	0	16	0 · 424	
4	0.885	17	0.525	
5	0.654	18	women	
6	3:10	19	0.151	
7	7:19	20	0,181	
8	0.011	21	0.125	
9	0.781	22	men	
10	0.382	23	0.135	
11	0.618	24	0.605	0,887
12	0.00075	25	Soluturs	
13	0.960		3	

East Los Angeles College Department of Mathematics

Math 227 Test 2

Show all work for credit and approximate all probabilities to the nearest thousandths.

The following table represents the distribution of marbles.

Color	Number
Yellow	20
Green	12
Blue	14
Purple	6
Total	52

If you select a marble at random, what's the probability the marble is:

- 1) Green?
- 2) Purple?
- 3) Red?
- 4) Non-Purple?
- 5) Yellow or Blue?

What's the odds for selecting:

- 6) Green?
- 7) Blue?

If you select two different marbles, what's the probability the marbles are:

- 8) Both Purple?
- 9) Both non-Purple?

If you select three different marbles at random, what's the probability:

- 10) None are Blue?
- 11) At least one is Blue?

A bin of 200 iPhones contains phones that are defective and non-defective. Past experience indicates that 3% of all bins of iphone's are defective. If you select two different iphones at random, what's he probability:

- 12) Both are defective?
- 13) Both are non-defective?
- 14) At least one is defective?

The following table represents degree data from a random sample at a local university.

Degree	Bachelor	Masters	PhD	Total
Men	28	26	12	66
Women	42	28	10	80 146
Total	70	54	22	

If you select a graduate at random, what's the probability the graduate earned:

- 15) Bachelor's degree?
- 16) Bachelor's degree given that the graduate was a man?
- 17) Bachelor's degree given that the graduate was a woman?
- 18) What gender was more likely to earn a bachelor's degree?
- 19) PhD?
- 20) PhD given that the graduate was a man?
- 21) PhD given that the graduate was a woman?
- 22) What gender was more likely to earn a PhD?

If you select two different graduates at random, what's the probability:

- 23) They both earned a Master's Degree?
- 24) At least one earned a Master's Degree?
- 25) What is your name?

$$=\frac{12}{52} \sim [0.231]$$

(2)
$$P(p) = \frac{n(p)}{h(s)}$$

(4)
$$p(non P) = n(non P)$$
 or $1 - p(p)$

$$n(s)$$

$$= \frac{46}{52} = \frac{1 - 0.115}{2 \cdot 0.885}$$

$$=\frac{20}{52}+\frac{14}{52}-\frac{6}{52}$$

$$=\frac{34}{52} \approx \left[0.654\right]$$

6) odds for 9

n(6): n(non 6)

12:40 ,6:20 ,13:10

(7) n(B): n (NONB)

14:30 , 17:19

(8) p(Both purple)

= P (1St and 2nd)

= b (b), b (sud)

 $=\frac{6}{52}$, $\frac{5}{51}$, $\frac{30}{2652}$ ≈ 0.011

(9) p (both non-purple)

= P (non and non)

= P (non) . D (non)

 $=\frac{46}{52}\frac{45}{51}=\frac{2070}{2652}\approx \left[0.781\right]$

$$= \frac{36}{52} \cdot \frac{37}{51} \cdot \frac{36}{50} = \left[0.392\right]$$

$$=\frac{6}{200}$$
, $\frac{5}{199}$ $\approx |0.00075|$

$$= \frac{194}{195} = \frac{193}{200} = \frac{193}{194} = \frac{10.960}{194}$$

$$= \frac{42}{80} \approx \left[0.525\right]$$

(19)
$$P(pha) = n(pha)$$

$$n(s)$$

$$=\frac{22}{146} \approx 10.151$$

$$p(phalm) = n(phalm)$$
 $n(m)$

$$=\frac{54}{146},\frac{53}{145} \approx 10.135$$