Answer Sheet

	Ansv	ver Sheet	
1	0.111	15	0.092
2	0.178	16	0.205
3	0.689	17	0.257
4	0.711	18	0-544
5	0.489	19	0.108
6	0.911	20	0.918
7	2.4	21	0.544
8	2.0	22	0.393
9	1.4	20	9,1840
10	0.0008	24	99.01%
11	0.9992	25	0.3840
12	- 5	26	0.3840
13	798	27	8 1940
14	- 4.36	28	Solutions

East Los Angeles College Department of Mathematics

Math 227 Test 3

Let x represent the number of days an employee is absent per year in the workplace.

х	p(x)
0	0.111
1	0.178
2	0.222
3	0.267
4	0.133
5	0.089

What's the probability an employee misses:

- 1. No days?
- 2. One day?
- 3. At least one day?
- 4. At least two days?
- 5. More than two days?
- 6. No more than four days?
- 7. What's the expected number of days missed? Approximate to the nearest tenths.
- 8. What's the variance for this distribution? Approximate to the nearest tenths.
- 9. What's the standard deviation for this distribution? Approximate to the nearest tenths.

Husky Casino has a new game called the Two Red Aces Game for a chance to win a prize of \$ 800. It cost's \$ 5 to play this game and you win by selecting two different red aces.

- 10. What's the probability of winning this game? Approximate to the nearest ten thousandths.
- 11. What's the probability of losing this game? Approximate to the nearest ten thousandths.
- 12. How much do you lose if you do not draw two different aces?
- 13. What is the net of winning for this game?
- 14. What is the expected value for this game? Approximate to the nearest hundredths.

A computer salesman has a mean of 2.5 sales per week (5-day interval). In the next week, what's the probability the computer salesman sells:

- 15. No computers? Approximate to the nearest thousandths.
- 16. One computer? Approximate to the nearest thousandths.
- 17. Two computers? Approximate to the nearest thousandths.
- 18. Less than three computers? Approximate to the nearest thousandths.
- 19. More than four computers? Approximate to the nearest thousandths.
- 20. At least one computer? Approximate to the nearest thousandths.
- 21. No more than two computers? Approximate to the nearest thousandths.

- 22. in the next day, what's the probability the salesman will have at least one computer sale? Approximate to the nearest thousandths.
- IQ Scores are normally distributed with a mean of 100 and a standard deviation of 15. What percent of the population has an IQ score of:
- 23. At least 120?
- 24. No more than 135?
- 25. Less than 60?
- 26. Between 60 and 135?
- 27. Between 120 and 135?
- 28. What is your name?

(1) HO Days ; x = # of days absort

(2) One day; x=1

(3) at least one day , XZI

(4) at least two days; x 22

(S) More than 2 ; x>2

1. ()

P(x 2)=

	х	p(x)	xp(x)	x^2p(x)
	0	0.111	0	0
	1	0.178	0.178	0.178
	2	0.222	0.444	0.888
	3	0.267	0.801	2.403
	4	0.133	0.532	2.128
	5	0.089	0.445	2.225
Sum			2.4	7.8

(6) No more than
$$4 \text{ days}', x = 4$$

$$P(x = 4) = P(0) + P(1) + P(2) + P(3) + P(4)$$

$$= 1 - P(s)$$

$$= 1 - 0.089$$

$$= 10.911$$

(7)
$$\mu = \mathbb{Z} \times p(\kappa)$$
; $|\mu = 2.4|$ See Spread Shoot

(9)
$$6^2 = \mathbb{E} \times^2 p(x) - \mu^2$$

$$= 7.9 - 2.4^2$$

$$|6^2 = 2.04| |6^2 = 2.0|$$

$$=\frac{2}{52} \cdot \frac{1}{51}$$

(11)
$$P(L) = 1 - P(w)$$

= 1 - 0.0008
 $2 \mid 0.9992$

$$\mu = 795.0.0008 - 5.0.9992$$

$$\mu = -4.36$$

(IS)
$$x = \pm computer Sales', \mu = 2.5$$

(week (week; $S = days$) $S = days$)

$$p(x) = \frac{\mu \times e^{-\mu}}{\times i}, \quad p(x) = 2.5 \times e^{-2.5}$$

$$(x=0)'$$
; $p(0) = 2.5^{\circ}e^{-2.5}$; $p(0) = e^{-2.5}$

P(0) 20.082

(16)
$$K = 1$$
 ', $P(1) = 2.5^{1} e^{-2.5}$
 $P(1) = 2.5 e^{-2.5}$ ', $P(1) = 0.205$

(18) less than 3', x < 3
$$p(x < 3) = p(0) + p(1) + p(2)$$

$$= 0.092 + 0.205 + 0.257$$

(19) More tran 4 , x>4

P(x>4) = P(s) + P(6)+P(7)+...

we need p(3) and p(4)

$$p(3) = \frac{2.5^3 e^{-2.5}}{3!}$$
 $p(3) = \frac{2.5^3 e^{-2.5}}{9}$
 $p(3) \approx 0.214$

$$P(4) = 2.5^{4} e^{-2.5}$$
, $P(4) = 2.5^{4} e^{-2.5}$

$$7$$

$$P(4) \approx 0.134$$

P(x)4) = 1-0.082-0.205-0.257-0.214-0.134

(20) at least one;
$$x \ge 1$$

$$P(x \ge 1) = P(1) + P(2) + ...$$

$$= 1 - P(0)$$

$$= 1 - 0.082$$

[21] No more than 2',
$$x \le 2$$

$$p(x \le 2) = p(0) + p(1) + p(2)$$

$$= 0.082 + 0.205 + 0.257$$

$$= |0.544|$$

$$\frac{2.5}{5} = \frac{M}{1}$$
 / $M = 0.5$ customos 1 day

