1		0.211	-	14	0.078	-
2		0.368	-	15	0. • 584	-
3		0	-	16	0.528	
4		0.789	_	17	0.634	_
5		0.579	-	18	wowen.	_
6	5:14	0.263	-	19	0.182	_
7	3'.16	0.128	-	20	0.222	-
8		0.040	-	21	0.146	_
9		0.619	-	22	Men	_
10		0.240	-	23	0.053	-
11		0.760	-	24	0.414	-
12		0.002	_	25	solutions	_
13		0.922	/		25 ~	

East Los Angeles College Department of Mathematics

Math 227

Test 2

Show all work for credit and approximate all probabilities to the nearest thousandths.

The following table represents the distribution of marbles.

Color	Number		
Yellow	10		
Green	14		
Blue	8		
Purple	6		
Total	38		

If you select a marble at random, what's the probability the marble is:

- 1) Blue?
- 2) Green?
- 3) Orange?
- 4) Non-Blue?
- 5) Blue or Green?

What's the odds for selecting:

- 6) Yellow?
- 7) Purple?

If you select two different marbles, what's the probability the marbles are:

- 8) Both Blue?
- 9) Both non-Blue?

If you select three different marbles at random, what's the probability:

- 10) None are Green?
- 11) At least one is Green?

A bin of 800 iPhones contains phones that are defective and non-defective. Past experience indicates that 4% of the iphone's are defective. If you select two different iphones at random, what's he probability:

- 12) Both are defective?
- 13) Both are non-defective?
- 14) At least one is defective?

The following table represents degree data from a random sample at a local university.

Degree	Bachelor	Masters	PhD	Total
Men	38	18	16	72
Women	52	18	12	82
Total	90	36	28	154

If you select a graduate at random, what's the probability the graduate earned:

- 15) Bachelor's degree?
- 16) Bachelor's degree given that the graduate was a man?
- 17) Bachelor's degree given that the graduate was a woman?
- 18) What gender was more likely to earn a bachelor's degree?
- 19) PhD?
- 20) PhD given that the graduate was a man?
- 21) PhD given that the graduate was a woman?
- 22) What gender was more likely to earn a PhD?

If you select two different graduates at random, what's the probability:

- 23) They both earned a Master's Degree?
- 24) At least one earned a Master's Degree?
- 25) What is your name?

math 727 Test 2

$$(0 p(b) = n(b) p(b) = \frac{8}{38}$$

$$n(s)$$
; $p(6) = \frac{14}{38}$

(3)
$$p(0) = n(0)$$
, $p(0) = 0$, $p(0) = 0$

$$(7) p(p) = n(p) ; p(p) = 6$$

$$(8) r(s) ; p(p) = 6$$

(8)
$$p (both blue) = p (1st and 2nd)$$

$$= p (1st) p (2ng) (st)$$

$$= \frac{8}{38} \cdot \frac{7}{37}$$

$$\approx 0.4 (0.040)$$

(9)
$$p$$
 (both non blue)
$$= p \left(\begin{array}{c} 18t \\ not \\ not \\ \end{array} \right)$$

$$= p \left(\begin{array}{c} 18t \\ not \\ \end{array} \right) p \left(\begin{array}{c} 2nd \\ not \\ \end{array} \right)$$

$$= \frac{30}{38} \cdot \frac{29}{37}$$

$$\approx \left(\begin{array}{c} 0.619 \\ \end{array} \right)$$

(10) p(none are G) = p(int cme ind and int)
$$= p(int) p(int) p(int) p(int) p(int) unt are int)$$

$$= \frac{24}{38} \cdot \frac{23}{37} \cdot \frac{22}{36}$$

$$= \frac{0.240}{3}$$

(1) p(at least one is 5) = 1 - p(none are G)

= 1 - 0.240

$$\approx 0.760$$

(12) 800

4th defective; 4th at 800 = 0.04.800

= $\frac{32}{20}$

clef

ie, 32 defective

766 ok

p(both clof) = p(claf and clof)

= p(claf) · p(2nd) | 1st claf)

= $\frac{32}{800}$ · $\frac{31}{749}$
 ≈ 0.002

(13) p(both or) = p(1st and or)

= $p(1st)$ · p(2nd)

(s)
$$p(B) = n(B)$$

$$n(S)$$

$$=\frac{52}{82}$$
 $\approx (0.634)$

(19)
$$p(phd) = n(phd)$$
 $n(s)$

$$=\frac{28}{154} \approx 0.182$$

$$\frac{(21)}{p(phd | w)} = n(phd and w)$$

$$= \frac{12}{82} \approx (0.146)$$

$$=\frac{36}{154}$$
, $\frac{35}{153}$