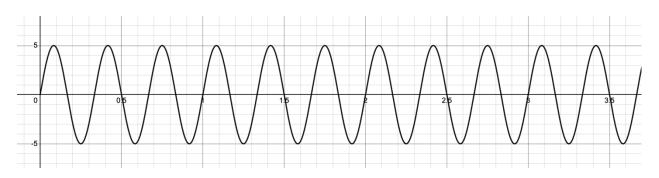
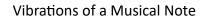
Simple Harmonica Motion

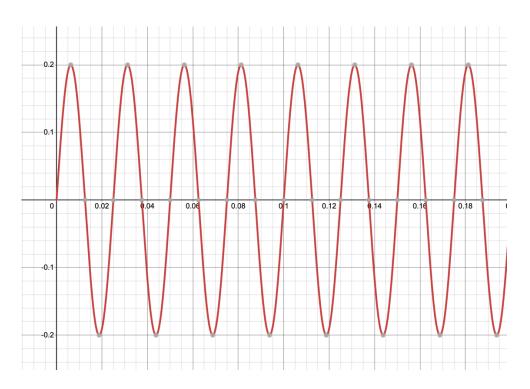
If an equation describes the displacement y of an object at time t is:


 $y = asin(\omega t)$ $y = acos(\omega t)$ $t \ge 0$

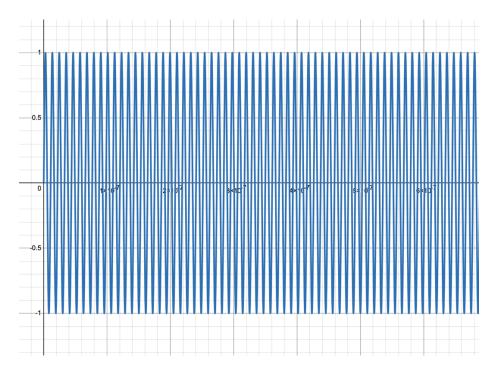
Then the object is in simple harmonic motion.


amplitude = |a| max displacement. $Period = \frac{2\pi}{\omega} \text{ time required to complete one cycle.}$ $frequency = \frac{\omega}{2\pi} \text{ number of cycles per unit time.}$ $Note- f = \frac{1}{p} \text{ and } P = \frac{1}{f}$

Vibrating Spring

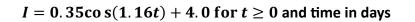

$y = 5sin(6\pi t)$ for $t \ge 0$ and time in seconds

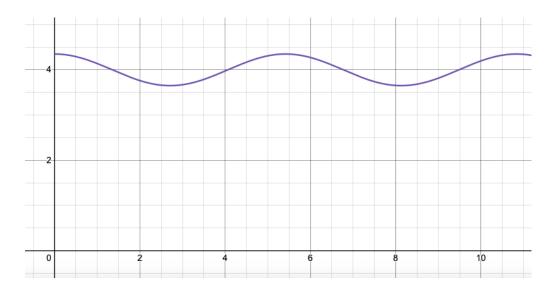
- 1. Determine the amplitude, period, and frequency.
- 2. Sketch one cycle.


$v = 0.2 \sin n(80\pi t)$ for $t \ge 0$ and time in seconds

- 3. Determine the amplitude, period, and frequency.
- 4. Sketch one cycle.

FM Radio Signals


The carrier wave of an FM Radio is modeled by the following function.



 $y = sin[2\pi(9150000t)]$ for $t \ge 0$ and time seconds

- 5. Determine the amplitude, period, and frequency.
- 6. Sketch one cycle.

Brightness (Intensity) of Variable Star

- 7. Determine the amplitude, period, and frequency.
- 8. Sketch one cycle.

Find a function that models **simple harmonic motion** with the following properties. Assume displacement is 0 when t = 0.

 $y = asin(\omega t)$

9. Amplitude is 12 cm and period is 4 sec.

10. Amplitude is 22 feet and period is 2 minutes.

11. Amplitude is 2.2 meters and frequency is $\frac{3}{\pi}$ Hz

12. Amplitude is 1.2 inches and frequency is 0/5 Hz.

Find a function that models **simple harmonic motion** with the following properties. Assume displacement is max when t = 0.

 $y = acos(\omega t)$

13. Amplitude is 6 feet and period is 0.5 minutes.

14. Amplitude is 5 cm and period is 12 sec.

15. Amplitude is 4.2 inches and frequency is 400 Hz.

16. Amplitude is 6.25 meters and frequency is 60 Hz.