Projection Vector

Now that we know how to describe the “shadow” of a vector of & onto ¥ known as the
component of % onto ¥ described below. We can move forward and determine the projection vector of

Uu onto v.

The projection vector i onto ¥ is based on “unitizing” the vector ¥ and then applying the component of

u onto v.

Unitizing

Let ¥ = (a, b) be a non-zero vector. We can unitize the vector by determine the magnitude of ¥

and dividing the components by |7].

_ a b . .
¥ = (—,—) will be a unit vector.
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Unitize the following vectors.

1. v =(1,1)

2. 7=(42)

3. v=(-1,-3)
4. v = (4,0)

5. 7=(0,-3)
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We can now proceed to determine the component of component of & onto ¥ to determine the
projection vector of u onto v.
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proj, @ = (1) ¥
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Determine the projection vector of # onto ¥.
6.u=(2,—1)and v = (1,3)

7.u=(0,4)and v = (1,—1)

8. u=(-51)and 7 = (6,—6)

9. #=(0,5)and v = (—2,3)

10. u =(3,—4)and v = (4,—1)



We can resolve the projection vector of % onto ¥ into two orthogonal vectors w; and w.

Y

Where wy = proj_ () and w, = u — proj_ (u)

Determine the projection vector of u onto ¥ and resolve the two orthogonal vectors w; and w.
11.u = (2,—1)and v = (1,3)

12.u =(0,4)and v = (1,—1)

13. u =(-5,1)and ¥ = (6, —6)

14. 4 = (0,5) and v = (—2,3)

15. 4 =(3,—4)and v = (4,—1)




