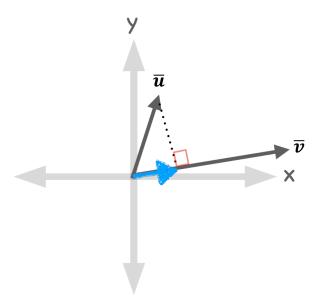
Projection Vector

Now that we know how to describe the "shadow" of a vector of \overline{u} onto \overline{v} known as the component of \overline{u} onto \overline{v} described below. We can move forward and determine the **projection vector of** \overline{u} onto \overline{v} .

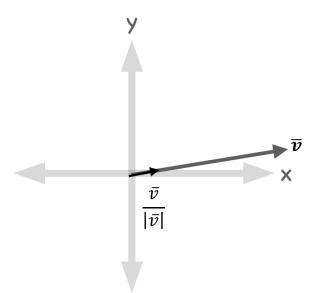


The projection vector \overline{u} onto \overline{v} is based on "unitizing" the vector \overline{v} and then applying the component of \overline{u} onto \overline{v} .

Unitizing

Let $\bar{v} = \langle a, b \rangle$ be a non-zero vector. We can unitize the vector by determine the magnitude of \bar{v} and dividing the components by $|\bar{v}|$.

$$\bar{v} = \langle \frac{a}{|\bar{v}|}, \frac{b}{|\bar{v}|} \rangle$$
 will be a **unit vector.**



Unitize the following vectors.

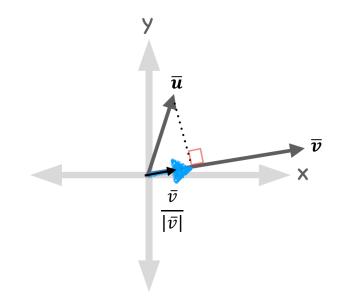
- 1. $\bar{v} = \langle 1, 1 \rangle$
- 2. $\bar{v} = \langle 4, 2 \rangle$
- 3. $\bar{v} = \langle -1, -3 \rangle$
- 4. $\bar{v} = \langle 4, 0 \rangle$ 5. $\bar{v} = \langle 0, -3 \rangle$

We can now proceed to determine the component of component of \overline{u} onto \overline{v} to determine the **projection vector of** \overline{u} **onto** \overline{v} .

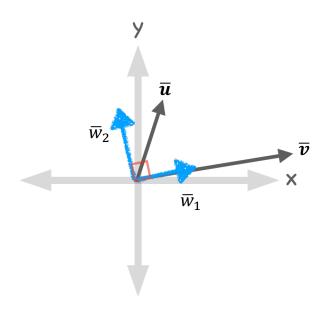
$$proj_{\overline{v}.}(\overline{u}) = comp \ of \ \overline{u} \ along \ \overline{v} \cdot \frac{\overline{v}}{|\overline{v}|}$$
$$proj_{\overline{v}.}(\overline{u}) = |\overline{u}|cos(\theta) \cdot \frac{\overline{v}}{|\overline{v}|}$$

$$proj_{\overline{v}}(\overline{u}) = |\overline{u}| \frac{u \cdot v}{|\overline{u}| |\overline{v}|} \cdot \frac{v}{|\overline{v}|}$$

$$proj_{\overline{v}}(\overline{u}) = \left(\frac{\overline{u} \cdot \overline{v}}{|\overline{v}|^2}\right)\overline{v}$$



Determine the projection vector of \bar{u} onto \bar{v} . 6. $\bar{u} = \langle 2, -1 \rangle$ and $\bar{v} = \langle 1, 3 \rangle$ 7. $\bar{u} = \langle 0, 4 \rangle$ and $\bar{v} = \langle 1, -1 \rangle$ 8. $\bar{u} = \langle -5, 1 \rangle$ and $\bar{v} = \langle 6, -6 \rangle$ 9. $\bar{u} = \langle 0, 5 \rangle$ and $\bar{v} = \langle -2, 3 \rangle$ 10. $\bar{u} = \langle 3, -4 \rangle$ and $\bar{v} = \langle 4, -1 \rangle$ We can **resolve** the projection vector of \bar{u} onto \bar{v} into two **orthogonal vectors** \bar{w}_1 and \bar{w}_2 .



Where $\overline{w}_1 = proj_{\overline{v}}(\overline{u})$ and $\overline{w}_2 = \overline{u} - proj_{\overline{v}}(\overline{u})$

Determine the projection vector of \overline{u} onto \overline{v} and resolve the two orthogonal vectors \overline{w}_1 and \overline{w}_2 . 11. $\overline{u} = \langle 2, -1 \rangle$ and $\overline{v} = \langle 1, 3 \rangle$ 12. $\overline{u} = \langle 0, 4 \rangle$ and $\overline{v} = \langle 1, -1 \rangle$ 13. $\overline{u} = \langle -5, 1 \rangle$ and $\overline{v} = \langle 6, -6 \rangle$ 14. $\overline{u} = \langle 0, 5 \rangle$ and $\overline{v} = \langle -2, 3 \rangle$ 15. $\overline{u} = \langle 3, -4 \rangle$ and $\overline{v} = \langle 4, -1 \rangle$