One Way ANOVA

Analysis of Variance

When we are interested in determining if the means from at least three different populations are the same we use the **Method of Analysis of Variance.** This is done in the form of a formal **Hypothesis Testing Procedure**.

 $H_0: \mu_1 = \mu_2 = \mu_3 = \cdots \mu_k$ Claim $H_1:$ at least one μ is not equal

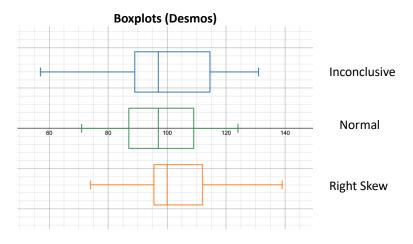
Because this process is very complicated Mathematically, we emphasize the use of technology and the interpretation of the results.

One Way ANOVA is a method of testing the equality of three or more population means by analyzing the sample variances. One way Analysis of Variance is used with data categorized with **one factor (treatment)**. This is a single factor used to separate the sample data into distinct groups.

Requirements

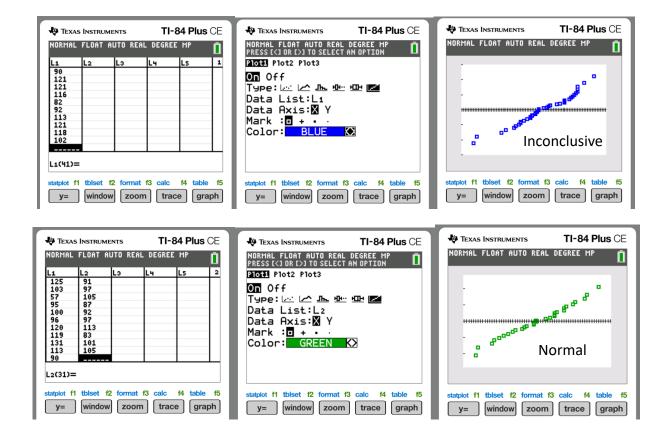
- The populations have distributions that are approximately normal. This is a loose requirement.
- The populations have the same population variance σ^2 or standard deviation σ . This is a loose requirement.
- The samples are random and independent from one another.
- The different samples are from populations that are categorized in one way.

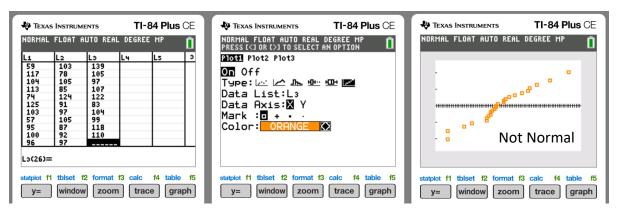
Procedure for Testing $H_0: \mu_1 = \mu_2 = \mu_3 = \cdots + \mu_k$ Claim

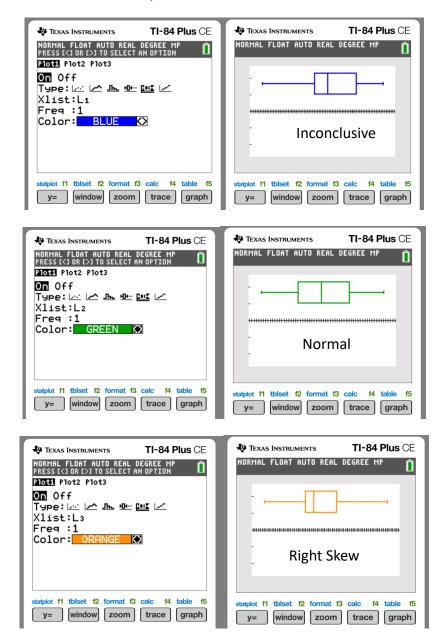

- Use technology to obtain the **Test Statistic** *F* and *p* value.
- The ANOVA Test is a Right Tailed Test.

We will study examples to get a good feel for Analysis of Variance known as ANOVA.

Performance IQ Scores based on the Height of Men (Short, Medium, Tall)

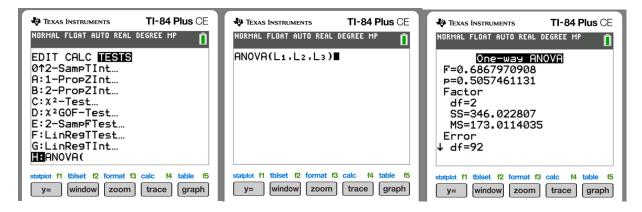

Sample Statistics are in the table below along with Boxplots (Desmos) for **short men** (below 5 ft 5), **medium height men** (between 5 ft 5 inches and 5 ft 9 inches) and **tall men** (above 5 ft 10 inches).


Tall Men							
86	93	108	59	125	96	90	92
96	88	97	117	103	120	121	113
92	86	83	104	57	119	121	121
93	97	77	113	95	131	116	118
110	95	85	74	100	113	82	102
Mean	99.685						
Variance	300.709						
SD	17.341						
n	40						
Medium He	ight Men						
79	72	119	103	91	97		
109	109	114	78	97	113		
106	96	110	105	105	83		
93	96	71	85	87	101		
81	88	118	124	92	105		
Mean	97.563						
Variance	199.991						
SD	14.142						
n	30						
	50						
Short Men							
87	117	114	139	83			
100	129	74	105	104			
96	95	74	97	99			
100	98	101	107	118			
95	104	97	122	110			
Mean	102.631						
Variance	232.805						
SD	15.258						
n	25						

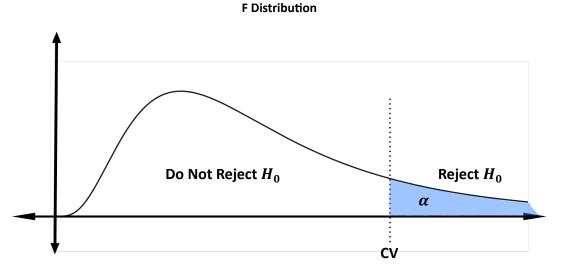


It is a good thing they need to be "loosely" Normal Distributed.

We can Access for Normality being creating a Normal Quantile Plot in the TI-84 Calculator. Let L_1 represent the IQ Scores for tall men, L_2 represent the IQ Scores for medium height men, L_3 represent the IQ Scores for short men.



We can create **Boxplots** with the **TI-84 Plus CE calculator** as well.


Modern (*P* Value Method) Hypothesis Test for Analysis of Variance with $\alpha = 5\%$

 $H_0: \mu_1 = \mu_2 = \mu_3$ Claim $H_1:$ at least one μ is not equal

Using the $ANOVA(L_1, L_2, L_3)$ in the TI-84 Plus CE Calculator

 $p \approx 0.506; p \ll \alpha$; Accept H_0 The Sample Supports the Claim The data comes from populations having the same means However, if you would like to use the **Traditional Hypothesis Testing Method** for ANOVA that is based on the F Distribution.

- The F distribution is not symmetric and is right skewed.
- The values of the F distribution are non-negative.
- The slope of the F distribution is dependent on two different degrees of freedom.

Test Statistic
$$F = \frac{n s_{\overline{x}}^2}{s_p^2}$$

The test Statistic is the ratio of two estimates for σ^2

1. The variation between samples (based on variation among the sample means).

$ns_{\overline{x}}^2$

2. Variation within samples (based on the sample variances).

$$s_p^2$$

 $F = \frac{\text{variation between samples}}{\text{variation within samples}}$

Performance IQ Scores based on the Height of Men (Short, Medium, Tall)

 $H_0: \mu_1 = \mu_2 = \mu_3$ Claim $H_1:$ at least one μ is not equal

Equal Sample Sizes are needed for increased accuracy! n=25

Medium Men Tall Men Small Men Mean 101.856 Mean 99.805 Mean 101.556 Variance 288.672 Variance 210.641 Variance 222.581 SD 16.990 14.513 SD 14.919 SD

n

25

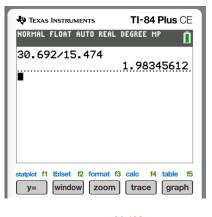
n

Variation Between Samples

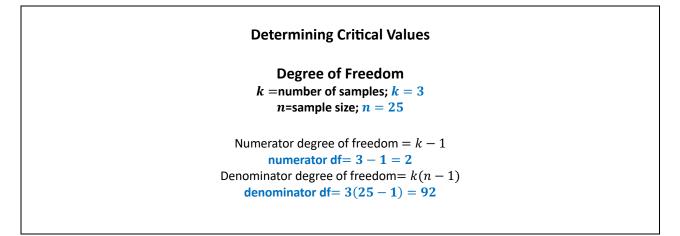
25

25

n


TEXAS INSTRUMENTS TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE
NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP
L1 L2 L3 L4 L5 1 101.86 99.805 101.56	<u>1-Var Stats</u> x=101.0723333 Sx=303.217 Sx ² =30649.3039 Sx=1.107745609 ox=0.9044705019 n=3 minX=99.805	25*1.108 ²
L1(4)=	↓ Q1=99.805	
statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplotf1tblsetf2formatf3calcf4tablef5y=windowzoomtracegraph	statplot f1tblsetf2formatf3calcf4tablef5y=windowzoomtracegraph

 $ns_{\bar{x}}^2 = 25 \cdot 1.108^2 \approx 30.692$


Variation Within Samples

TEXAS INSTRUMENTS	TI-84 Plus CE
NORMAL FLOAT AUTO REAL	DEGREE MP
(16.990+14.513+	14.919)/3 15.474
statplot f1 tblset f2 format f	3 calc f4 table f5
y= window zoom	trace graph

 $s_p^2 = \frac{16.990 + 14.513 + 14.919}{3} \approx 15.474$ Mean of the Sample Variances

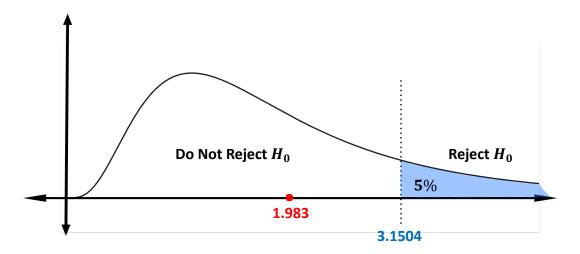
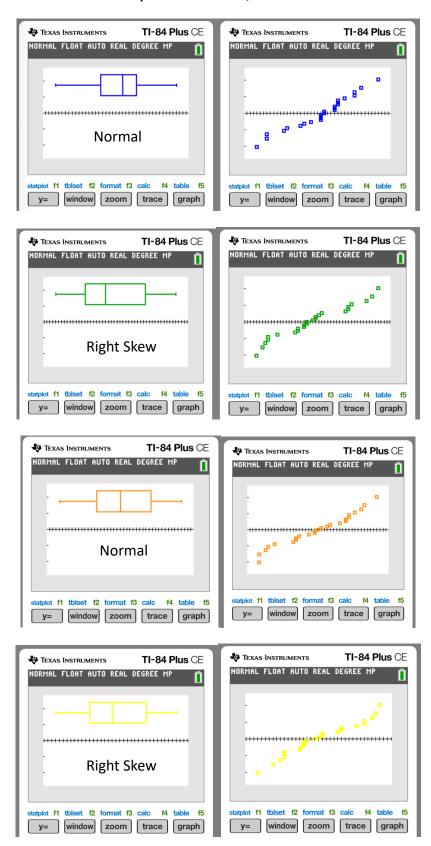

Test Statistic $F = \frac{30.692}{15.474} \approx 1.983$

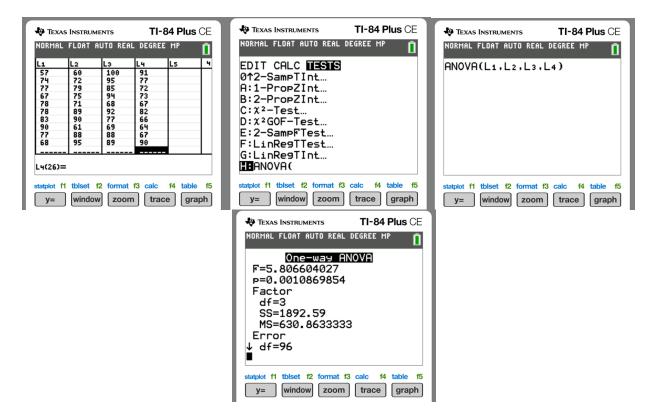
TABLE A-5 (continued) F Distribution ($\alpha = 0.05$ in the right tail)

					or degrees of fre					
		1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.812
	4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.998
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.772
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.676
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.388
	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.178
	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.020
	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.896
	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.796
_	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.714
(df ₂)	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.645
mop	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.587
ffree	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.537
Denominator degrees of freedom (df $_2$)	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.494
legre	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.456
tor	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.422
mins	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.392
Deno	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366
-	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.341
	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.320
	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.300
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.282
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.265
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.250
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.222
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.210
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.124
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.040
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.958
	00	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.879


The Sample Supports the Claim The data comes from populations having the same means

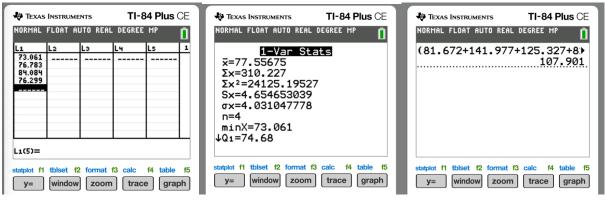
Lifespan of Americans (African, Hispanic, Asian, White)

Sample Statistics in the table below represent the lifespans of various American ethnic groups. Use the **5% level** of significance to test the claim that they come from populations with the same mean.


1	African American					L_3	Asian Americ	an			
I	57	73	54	57	78	- 23	95	99	86	100	92
	73	74	73	74	83		79	66	71	95	77
	70	85	78	77	90		66	84	104	85	69
	73	63	83	67	77		97	78	94	94	88
	80	77	62	78	68		84	78	82	68	89
	Mean	73.061					Mean	84.804			
	Variance	81.672					Variance	125.327			
	SD	9.037					SD	11.195			
	n	25					n	25			
2	Hispanic Ame	spanic American				L_4	White Americans				
	99	72	77	60	89	-	81	71	75	91	82
	78	97	80	72	90		60	71	86	77	66
	78	75	74	79	61		77	67	88	72	64
	65	62	74	75	88		72	72	76	73	67
	89	62	58	71	95		92	82	88	67	90
	Mean	76.783					Mean	76.299			
	Variance	141.977					Variance	82.628			
	SD	11.915					SD	9.090			
	n	25					n	25			

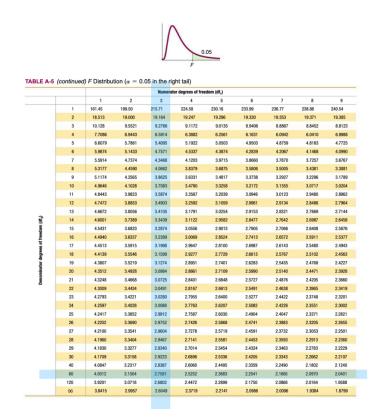
 $\begin{array}{l} H_0 {:} \ \mu_1 = \mu_2 = \mu_3 = \mu_4 \ \ {\rm Claim} \\ H_1 {:} \ {\rm at \ least \ one \ } \mu \ {\rm is \ not \ equal} \end{array}$

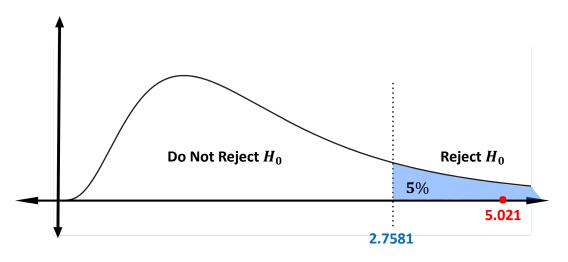
Boxplots and Normal Quantile Plots


ANOVA

$p \approx 0.001; p < \alpha; H_0$ is too low, H_0 has to go! The Sample Does Not Support the Claim

The data comes from populations with unequal means


Traditional Method



Test Statistic
$$F = \frac{n s_{\bar{x}}^2}{s_p^2} = \frac{25 \cdot 4.655^2}{107.901} \approx 5.021$$

Determining Critical Values

Numerator degree of freedom = k - 1numerator df= 4 - 1 = 3Denominator degree of freedom= k(n - 1)denominator df= 4(25 - 1) = 96

The Sample Does Not Support the Claim The data comes from populations having unequal means