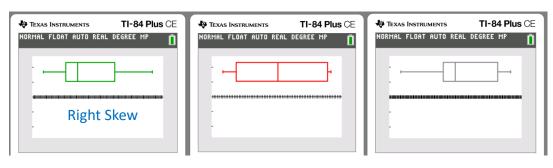
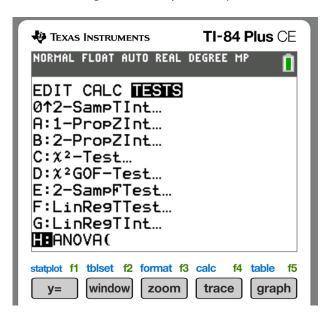
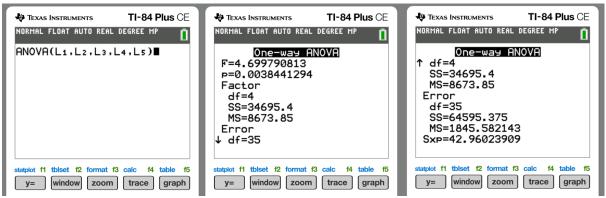

One Way ANOVA Worksheet Solutions

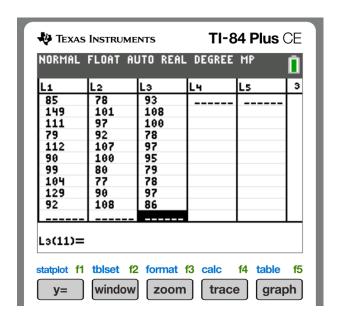

Analysis of Variance

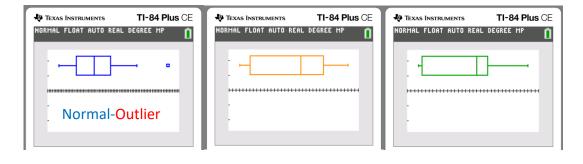
1. **Fast Food Service Time**-The table below lists the service times for fast-food restaurants at the Local Mall and measured from the time you order to the time you receive your food. Use the **5% level of significance** to test the claim that the samples come from populations with the same mean.


						Local Mall				
	Tommy's Burgers		Shanghai Dumpling	gs		Mario's Tacos		Luigi's Pizza		AZTECA Tacos
	108		116			287		238		253
	137		131			189		212		185
	196		147			202		188		264
	208		128			168		206		112
	282		125			242		176		189
	106		152			250		240		173
	110		142			209		180		168
	212		160			196		241		239
Mean	169.875	Mean	137.625		Mean	217.875	Mean	210.125	Mean	197.875
Var	4150.982	Var	225.411		Var	1503.268	Var	743.554	Var	2604.696
SD	64.428	SD	15.014		SD	38.772	SD	27.268	SD	51.036
n	8	n	8		n	8	n	8	n	8



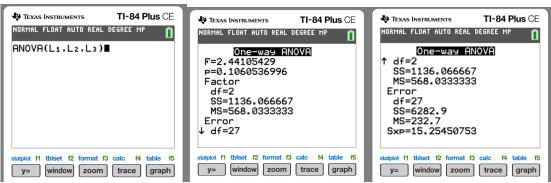
 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ Claim H_1 : at least one μ is not equal



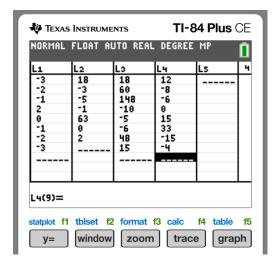


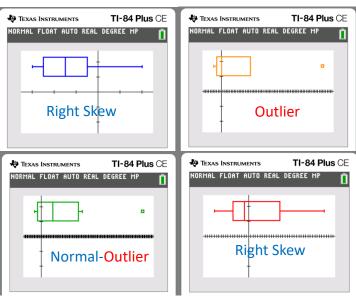
p pprox 0.004; p < 0.005; p value is low, H_0 has to go! The Sample Does Not Support the Claim The data comes from populations with unequal means

2. **Lead and Performance IQ Scores in Children**- IQ scores from three different blood levels are listed below. Use the **5% level of significance** to test the claim that the samples come from populations with the same mean.

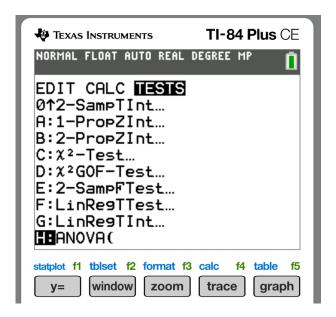

			Blood		
	Low Lead Level		Medium Lead Level		High Lead Level
	85		78		93
	149		101		108
	111		97		100
	79		92		78
	112		107		97
	90		100		95
	99		80		79
	104		77		78
	129		90		97
	92		108		86
Mean	105.000	Mean	93.000	Mean	91.100
Var	456.000	Var	134.444	Var	107.656
SD	21.354	SD	11.595	SD	10.376
n	10	n	10	n	10

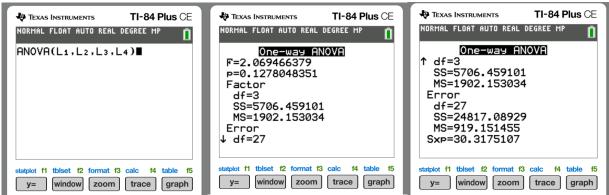
 H_0 : $\mu_1 = \mu_2 = \mu_3$ Claim H_1 : at least one μ is not equal



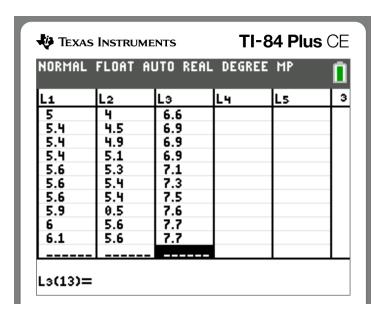

 $p \approx 0.106$; p < 0.005; Accept H_0 The Sample Supports the Claim

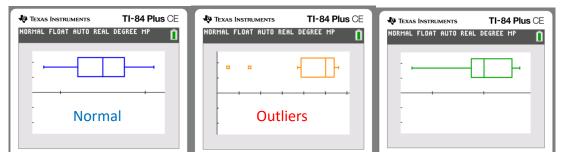
The data comes from populations with equal means


3. **Flight Departure Delay Times**- The table below lists the delay times (minutes) of a popular airline for flights headed to Las Vegas. Negative values correspond to flights that departed early. Use the **5% level of significance** to test the claim that the samples come from populations with the same mean.

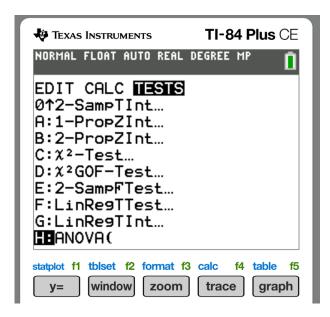

			Popula	r Airline			
	Flight 1		Flight 18		Flight 23		Flight 37
	-3		18		18		12
	-2		-3		60		-8
	-1		-5		148		-6
	2		-1		-10		0
	0		-4		-5		15
	-1		63		-6		33
	-2		0		48		-15
	-3		2		15		-4
Mean	-1.250	Mean	8.750	Mean	33.500	Mean	3.375
Var	2.786	Var	533.643	Var	2791.429	Var	243.982
SD	1.669	SD	23.101	SD	52.834	SD	15.620
n	8	n	8	n	8	n	8

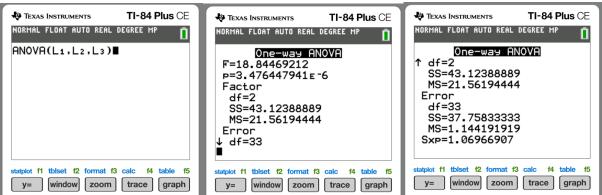
 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ Claim H_1 : at least one μ is not equal



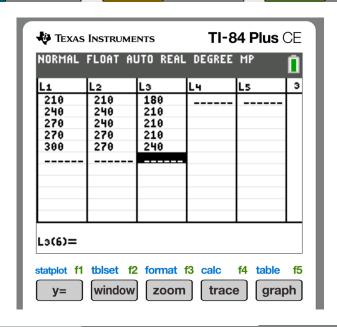

p pprox 0.106; p < 0.005; Accept H_0 The Sample Supports the Claim

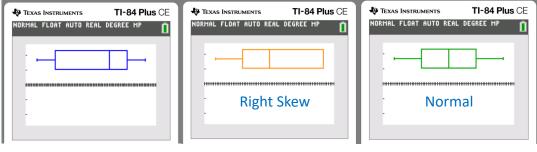
The data comes from populations with equal means


4. **Arsenic in Rice**- The tables below list the amount of Arsenic in Brown Rice from different states. The amounts are in micrograms of arsenic and all samples are of the same "serving sizes". The data is from the Food and Drug Administration. Use the **5% level of significance** to test the claim that the samples come from populations with the same mean.

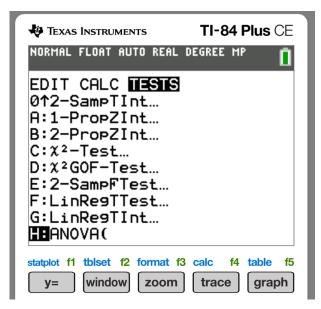

			State		
	Arkansas		California		Texas
	4.8		1.5		5.6
	4.9		3.7		5.8
	5		4		6.6
	5.4		4.5		6.9
	5.4		4.9		6.9
	5.4		5.1		6.9
	5.6		5.3		7.1
	5.6		5.4		7.3
	5.6		5.4		7.5
	5.9		5.5		7.6
	6		5.6		7.7
	6.1		5.6		7.7
Mean	5.475	Mean	4.7083	Mean	6.967
Var	0.175	Var	1.4154	Var	0.479
SD	0.418	SD	1.1897	SD	0.692
n	12	n	12	n	12

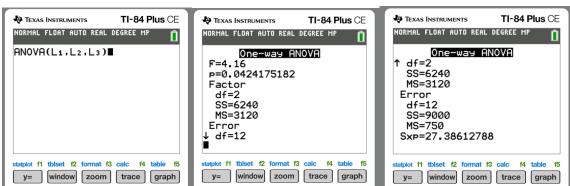
 H_0 : $\mu_1 = \mu_2 = \mu_3$ Claim H_1 : at least one μ is not equal




p pprox 0.000; p < 0.005; p value is low, H_0 has to go! The Sample Does Not Support the Claim

The data comes from populations with unequal means


5. **Cholesterol Medication**- A Pharmaceutical Company wants to test the effectiveness of a new medication. The table below represents the cholesterol levels with various doses of the new cholesterol medication. Use the **5% level of significance** to test the claim that the samples come from populations with the same mean.


	Group 1 0 mg 210 240		Dosage Group 2 50 mg 210 240		Group 3 100 mg 180 210
	270 270		240 270		210 210
	300		270		240
Mean Var	258.000 1170.000	Mean Var	246.000 630.000	Mean Var	210.000 450.000
SD	34.205	SD	25.100	SD	21.213
n	5	n	5	n	5

 H_0 : $\mu_1 = \mu_2 = \mu_3$ Claim H_1 : at least one μ is not equal

p pprox 0.000; p < 0.005; p value is low, H_0 has to go! The Sample Does Not Support the Claim

The data comes from populations with unequal means