Working Backwards with the Normal Distribution

Average IQ Scores by Country 2021 Average IQ by State 2021 IQ Classifications

IQ Scores are Normally Distributed with a mean of 100 and a standard deviation of 15.

What IQ Score is needed to be considered a Genius?

What IQ Score is needed to be eligible for MENSA membership?

A term that is no longer in use!

The key to answering all these questions is to work backwards!

We will use the TI Calculator and the InvNorm

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.04,100,15,Right)

 $x \approx 126$

Top 4%

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.02,100,15,Right)

Bottom 2%

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.02,100,15,Left)

Common Questions Over the Bell-Shaped Curve Working Backwards

Top 10% or 90th Percentile or 9th Decile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2nd** then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.

3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.10,100,15,Right)

Top 5% or 95th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.05,100,15,Right)

Top 1% or 99th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.01,100,15,Right)

Bottom 10% or 10th Percentile or 1st Decile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.10,100,15,Left)

Bottom 5% or 5th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.05,100,15,Left)

Bottom 1% or 1st Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.01,100,15,Left)

1st Quartile or 25th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.25,100,15,Left)

3rd Quartile or 75th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.25,100,15,Right)

85th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.85,100,15,Left)

6th Decile or 60th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvNorm and click enter.
- 3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (<mark>0.60</mark>,100,15,Left)

4th Decile or 40th Percentile

TI-83 or TI-84 Plus Finding the z vaue corresponding to a known area.

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

2. Select InvNorm and click enter.

3. Enter the shaded area assocaited with the x value, enter the mean μ , enter the standard deviation σ

InvNorm(shaded area, μ , σ , left or right) and press enter

InvNorm (0.40,100,15,Left)

