Hypothesis Testing about Two Independent Means

Hypothesis Testing Comparing Two Means μ_1 and μ_2

Language

The means are the same. The means are not different. $\mu_1 = \mu_2$ The means are not the same. The means are different. $\mu_1 \neq \mu_2$ $\mu_1 \text{ is more than } \mu_2$ $\mu_1 > \mu_2$ $\mu_1 \text{ is less than } \mu_2$ $\mu_1 < \mu_2$ $\mu_1 \text{ is no more than } \mu_2$ $\mu_1 \leq \mu_2$ $\mu_1 \text{ is at least } \mu_2$ $\mu_1 \leq \mu_2$

Assuming the population standard deviations σ_1 and σ_2 are unknown use the t-table.

TABLE A-3	t Distribution							
α								
Degrees of Freedom	.005 (one tail) 0.01 (two tails)	.01 (one tail) .02 (two tails)	.025 (one tail) .05 (two tails)	.05 (one tail) .10 (two tails)	.10 (one tail) .20 (two tails)	.25 (one tail) .50 (two tails)		
1	63.657	31.821	12.706	6.314	3.078	1.000		
2	9.925	6.965	4.303	2.920	1.886	.816		
3	5.841	4.541	3.182	2.353	1.638	.765		
4	4.604	3.747	2.776	2.132	1.533	.741		
5 6	4.032 3.707	3.365 3.143	2.571	2.015 1.943	1.476	.727		
7	3.500	2.998	2.365	1.895	1.415	.711		
8	3.355	2.896	2.306	1.860	1.397	.706		
9	3.250	2.821	2.262	1.833	1.383	.703		
10	3.169	2.764	2.228	1.812	1.372	.700		
12	3.054	2.681	2.179	1.782	1.356	.696		
13	3.012	2.650	2.160	1.771	1.350			
14	2.977	2.625	2.145	1.761	1.345	.692		
15	2.947	2.602	2.132	1.753	1.341	.691		
16	2.921	2.584	2.120	1.746	1.337	.690		
17	2.898	2.567	2.110	1.740	1.333	.689		
18 19 20	2.878 2.861 2.845	2.532 2.540 2.528	2.101 2.093 2.086	1.734 1.729 1.725	1.328 1.325	.688		
21 22	2.831 2.819	2.518	2.080	1.721	1.323	.686		
23	2.807	2.500	2.069	1.714	1.320	.685		
24	2.797	2.492	2.064	1.711	1.318			
25	2.787	2.485	2.060	1.708	1.316	.684		
26	2.779	2.479	2.056	1.706	1.315			
27	2.771	2.473	2.052	1.703	1.314	.684		
28	2.763	2.467	2.048	1.701	1.313	.683		
Large (z)	2.756	2.462	2.045	1.645	1.311	.683		

Age of College Students

The mean age of female college students is not the same as the mean age of male college students as claimed by Professor Snodgrass. A sample of 45 female college students reveal a mean age of 24.8 years with a standard deviation of 3.6 years, while a sample of 85 male college students reveal a mean age of 26.9 years and a standard deviation of 2.6 years. Use the 5% level of significance to test this claim.

TI-83 or TI-84 Plus Finding the t vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvT and click enter.
- 3. Enter the area to the left of the right most Critical Value.
- 4. Enter the degree of freedom of the smallest sample size.

TI-84 Plus CE

1. Press STAT, then select TESTS in the top menu.

2. Select 2-SampT-Test in the menu and press ENTER.

3. Enter sample mean $\bar{x}1$ 1 and the sample standard deviation and Sx1 and sample size n_1 from sample 1. The sample mean $\bar{x}2$ and the sample standard deviation and Sx2 and sample size n_2 from sample 2. Enter the desired format for the alternate hypothesis $\mu 1$.

TEXAS INSTRUMENTS TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE
NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP
2-SampTTest Inpt:Data Stats x1:24.8 Sx1:3.6 n1:45 x2:26.9 Sx2:2.6 n2:85 µ1:≢µ2 <µ2 >µ2 ↓Pooled: Yes	2-SampTTest µ1≠µ2 t=-3.463963004 p=9.196404668E-4 df=68.90365159 x1=24.8 x2=26.9 Sx1=3.6 ↓Sx2=2.6
statplotf1tblsetf2formatf3calcf4tablef5y=windowzoomtracegraph	statplotf1tblsetf2formatf3calcf4tablef5y=windowzoomtracegraph
quit ins 2nd mode del A-lock link list alpha X,T, θ ,n stat test A angle B draw C distr math apps prgm vars clear	quit ins 2nd mode del A-lock link list alpha X,T,θ,n stat test A angle B draw C distr math apps prgm vars clear matrix D sint E cost E tant C T H

The test Statistic is measured as a t value as $\,t=-3.46\,$

$p < \alpha$

0.00 < 0.05

Accept H_1

The Sample Supports the Claim

Lifespan of Hawaiian Residents

The mean lifespan of male Hawaiian residents is the same as the mean lifespan of female Hawaiian residents as claimed by the State of Hawaii. A sample of 120 male Hawaiian residents reveal a mean lifespan of 78.2 years with a standard deviation of 5.8 years, while a sample of 100 female Hawaiian residents reveal a mean of 82. 1 years with a standard deviation of 8.3 years. Use the 1% level of significance to test this claim.

TI-83 or TI-84 Plus Finding the t vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvT and click enter.
- 3. Enter the area to the left of the right most Critical Value.
- 4. Enter the degree of freedom of the smallest sample size.

TI-84 Plus CE

1. Press STAT, then select TESTS in the top menu.

2. Select 2-SampT-Test in the menu and press ENTER.

3. Enter sample mean $\bar{x}1$ 1 and the sample standard deviation and Sx1 and sample size n_1 from sample 1. The sample mean $\bar{x}2$ and the sample standard deviation and Sx2 and sample size n_2 from sample 2. Enter the desired format for the alternate hypothesis $\mu 1$.

The test Statistic is measured as a t value as t = -3.96

$p < \alpha$

0.00 < 0.01

Accept H_1

The Sample Supports the Claim

Color and Cognition

Researchers conducted a study to investigate the effects of color and cognitive tasks. Words were displayed on a computer screen with background colors of red and blue. The results of word recall are given with the following sample data for each color.

			Sample Standard
Recall	Sample Size	Sample Mean	Deviation
Red	38	16.32	4.85
Blue	36	15.95	4.72

Use the 5% level of significance to test the claim that the means are the same.

TI-83 or TI-84 Plus Finding the t vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvT and click enter.
- 3. Enter the area to the left of the right most Critical Value.
- 4. Enter the degree of freedom of the smallest sample size.

TI-84 Plus CE

1. Press STAT, then select TESTS in the top menu.

2. Select 2-SampT-Test in the menu and press ENTER.

3. Enter sample mean $\bar{x}1$ 1 and the sample standard deviation and Sx1 and sample size n_1 from sample 1. The sample mean $\bar{x}2$ and the sample standard deviation and Sx2 and sample size n_2 from sample 2. Enter the desired format for the alternate hypothesis $\mu 1$.

The test Statistic is measured as a t value as t = 0.333

 $p < \alpha$

 $0.74 \not < 0.05$

Accept H_0

The Sample Supports the Claim

Secondhand Smoke

Cotinine is a metabolite of nicotine. Meaning, when nicotine is absorbed by the body, cotinine is produced. Cotinine levels measured in a group of non-smokers exposed to tobacco smoke is compared to Cotinine levels of a group of smokers who are exposed to tobacco smoke. The following tables illustrates the data that was gathered.

Cotinine Levels for Non-Smokers	Sample Size	Sample Mean	Sample Standard Deviation
Exposed to Tobacco Smoke	42	60.12 ng/mL	136.48 ng/mL
Not Exposed to Tobacco Smoke	40	18.25 ng/mL	61.78 ng/mL

Use the 10% level of significance to test the claim that non-smokers exposed to tobacco smoke have a higher mean cotinine level than nonsmokers not exposed to tobacco smoke.

TI-83 or TI-84 Plus Finding the t vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvT and click enter.
- 3. Enter the area to the left of the right most Critical Value.
- 4. Enter the degree of freedom of the smallest sample size.

InvT area: 0.90 *df*: 39

TI-84 Plus CE

1. Press STAT, then select TESTS in the top menu.

2. Select 2-SampT-Test in the menu and press ENTER.

3. Enter sample mean $\bar{x}1$ 1 and the sample standard deviation and Sx1 and sample size n_1 from sample 1. The sample mean $\bar{x}2$ and the sample standard deviation and Sx2 and sample size n_2 from sample 2. Enter the desired format for the alternate hypothesis $\mu 1$.

The test Statistic is measured as a t value as t = 1.804

$p < \alpha$

0.08 < 0.10

Accept H_1

The Sample Supports the Claim

Seat Belts

A study of seat belt use involved children who were hospitalized after motor vehicle crashes. For a group of 125 children who were wearing seat belts, the number of days in the ICU has a mean of 0.87 with a standard deviation of 1.89 days. Among a group of 300 children who were not wearing seatbelts, the number of days spent in the ICU has a mean of 1.35 days with a standard deviation of 2.95 days. Use the 1% level of significance to test the claim that children wearing seatbelts have a lower mean length of days in the ICU than the mean for children not wearing seatbelts.

TI-83 or TI-84 Plus Finding the t vaue corresponding to a known area.

- 1. Press **2**nd then **vars** to access DISTR (distributions) menu.
- 2. Select InvT and click enter.
- 3. Enter the area to the left of the right most Critical Value.
- 4. Enter the degree of freedom of the smallest sample size.

TI-84 Plus CE

1. Press STAT, then select TESTS in the top menu.

2. Select 2-SampT-Test in the menu and press ENTER.

3. Enter sample mean $\bar{x}1$ 1 and the sample standard deviation and Sx1 and sample size n_1 from sample 1. The sample mean $\bar{x}2$ and the sample standard deviation and Sx2 and sample size n_2 from sample 2. Enter the desired format for the alternate hypothesis $\mu 1$.

The test Statistic is measured as a t value as t = -2.000

$p < \alpha$

 $0.02 \not < 0.01$

Accept H_0

The Sample Does Not Supports the Claim