Hypothesis Testing about a Mean μ Solutions

College students sleep for a mean equal to 5 hours the night before an exam as claimed by Professor Snodgrass. A sample of 250 college students reveal a mean of 4.2 hours with a standard deviation of 0.8 hours. Using the 1% level of significance to test the hypothesis, answer the following questions.

1. What is the claim?

 $H_0: \mu = 5$ Claim $H_1: \mu \neq 5$

2. What kind of test is this? Two tail test, right tail test, or left tail test? Two Tail Test

3. What are your critical value(s)? Approximate to the nearest thousandths. ± 2.576

Z – Test

 $z \approx -15.811$

5. What is your conclusion?

Reject H_0

The sample does not support the claim!

College students sleep for a mean is not equal to 4 hours the night before a final exam as claimed by Professor Snodgrass. A sample of 120 college students reveal a mean of 4.8 hours with a standard deviation of 1.2 hours. Using the 5% level of significance to test the hypothesis, answer the following questions.

6. What is the claim?

```
H_0: \mu = 4H_1: \mu \neq 4 \text{ Claim}
```

7. What kind of test is this? Two tail test, right tail test, or left tail test? Two Tail Test

 $\alpha = 5\%$

8. What are your critical value(s)? Approximate to the nearest thousandths. ± 1.960

TEXAS INSTRUMENTS TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE	TI-84 Plus CE
DISTR DRAW 1:normaledf(2:normaledf(SHipyNorm(invNorm area:.025 µ:0 c:1	invNorm(.025,0,1,LEFT) -1.959963986
4:invT(5:tpdf(6:tcdf(7:%2pdf(8:%2cdf(9↓Fpdf(Tail: Tail: CENTER RIGHT	
statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph

Z – Test

 $z \approx 7.303$

10. What is your conclusion?

Reject H_0

 H_1 : $\mu \neq 4$ Claim

The sample supports the claim!

College students have more than two pets at home as claimed by Professor Snodgrass. A sample of 150 college students reveal a mean of 3.2 pets with a standard deviation of 0.8 pets. Using the 10% level of significance to test the hypothesis, answer the following questions.

11. What is the claim?

$$H_0: \mu \leq 2$$
$$H_1: \mu > 2$$
Claim

12. What kind of test is this? Two tail test, right tail test, or left tail test? Right Tail Test

 $\alpha = 1\%$

13. What are your critical value(s)? Approximate to the nearest thousandths. 2.326

TEXAS INSTRUMENTS TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE NORMAL FLOAT AUTO REAL DEGREE MP	TEXAS INSTRUMENTS TI-84 Plus CE
DISTR DRAW 1:normaledf(2:normalcdf(BlinvNorm(4:invT(5:tedf(6:tcdf(7:%2edf(8:%2cdf(9↓Fedf(invNorm area:.01 μ:0 σ:1 Tail: LEFT CENTER RIGHT	invNorm(.01,0,1,RIGHT) 2.326347877
statplot f1tblsetf2formatf3calcf4tablef5y=windowzoomtracegraph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph

Z – Test

 $z \approx 18.371$

15. What is your conclusion?

Reject H₀

 $H_1: \mu > 2$ Claim

The sample supports the claim!

College students spend more than 3 hours per night on social media as claimed by Professor Snodgrass. A sample of 20 college students reveal a mean of 3.2 hours with a standard deviation of 1.1 hours. Using the 5% level of significance to test the hypothesis, answer the following questions.

16. What is the claim?

$$H_0: \mu \le 3$$
$$H_1: \mu > 3 \text{ Claim}$$

17. What kind of test is this? Two tail test, right tail test, or left tail test? Right Tail Test

 $\alpha = 5\%$

18. What are your critical value(s)? Approximate to the nearest thousandths. 1.729

invT n = 20 Small Sample df = 19

T – Test

 $t \approx 0.813$

20. What is your conclusion?

Do Not Reject H_0

 H_1 : $\mu > 3$ Claim

The sample does not support the claim!

College Students have at least 250 friends on Instagram as claimed by Professor Snodgrass. A sample of 25 college students reveal a mean of 265.3 friends with a standard deviation of 32.8 friends. Using the 10% level of significance to test the hypothesis, answer the following questions.

21. What is the claim?

$$H_0: \mu \ge 250$$
 Claim
 $H_1: \mu < 250$

22. What kind of test is this? Two tail test, right tail test, or left tail test? Left Tail Test

 $\alpha = 10\%$

23. What are your critical value(s)? Approximate to the nearest thousandths. -1.318

invT n = 25 Small Sample df = 24

TEXAS INSTRUMENTS TI-84 Plus CE NORMAL FLOAT AUTO REAL DEGREE MP	TEXAS INSTRUMENTS TI-84 Plus CE NORMAL FLOAT AUTO REAL DEGREE MP	TEXAS INSTRUMENTS TI-84 Plus CE
EDIT CALC HESIS 1:Z-Test 27T-Test	invl area:.10 df:24	invT(.10,24)
3:2-SampZTest 4:2-SampTTest 5:1-PropZTest		
6:2-PropZTest 7:ZInterval 8:TInterval		
9↓2-SampZInt statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph

T – Test

 $t \approx 2.332$

25. What is your conclusion?

Do Not Reject H_0

The sample supports the claim!

The following data represents the amount of time (hours) students on Netflix per day. Approximate your answer to the nearest tenths.

2,1,0,3,2,0,0,1,2,4

Compute the:

26. Sample mean. Approximate to the nearest thousandths. 1.5

27. Sample standard deviation. Approximate to the nearest thousandths. 1.354

TEXAS INSTRUMENTS TI-84 Plus CE	TI-84 Plus CE	TEXAS INSTRUMENTS TI-84 Plus CE
NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP	NORMAL FLOAT AUTO REAL DEGREE MP
EDIN CALC TESTS Edit 2:SortA(3:SortD(4:ClrList 5:SetUpEditor	L1 L2 L3 L4 L5 1 2 0 3 - - 0 - - - - 0 - - - - - - - 0 - <	EDIT CHLC TESTS 11-Var Stats 2:2-Var Stats 3:Med-Med 4:LinReg(ax+b) 5:QuadReg 6:CubicReg 7:QuartReg
statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	L1(11)= statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph	8:LinReg(a+bx) 9↓LnReg statplot f1 tblset f2 format f3 calc f4 table f5 y= window zoom trace graph

TEXAS INSTRUMENTS	TI-84 Plus CE
NORMAL FLOAT AUTO REAL	DEGREE MP
1-Var St x=1.5 Σx=15 Σx ² =39 Sx=1.354006401 σx=1.284523258 n=10 minX=0 ↓Q1=0	ats
statplot f1 tblset f2 format f y= window zoom	f3 calc f4 table f5 trace graph

Students spend more than 2 hours a day on social media, as claimed by Professor Snodgrass. Use the 10% level of significance to perform the following hypothesis test.

28. What is the claim?

 $\alpha = 10\%$

$$H_0: \mu \le 2$$
$$H_1: \mu > 2 \text{ Claim}$$

29. What kind of test is this? Two tail test, right tail test, or left tail test? Right Tail Test

 Bight Tail Test

 Do Not Reject

 Ho

 10%

 e

 1.383

30. What are your critical value(s)? Approximate to the nearest thousandths. 1.383

invT n = 10 Small Sample df = 9

T – Test

 $t \approx -1.168$

32. What is your conclusion?

Do Not Reject H_0

 H_1 : $\mu > 2$ Claim

The sample does not support the claim!