East Los Angeles College

Department of Mathematics Math 261 Test 1 Study Guide

Evaluate the following limits

- 1. $\lim_{x \to 3^{-}} \frac{4}{x-3}$
- 3. $\lim_{x \to \frac{\pi}{2}} \sec(x)$
- 5. $\lim_{x \to 1} \left(\frac{4x+1}{x^2 3x + 2} \right)$
- 7. $\lim_{x \to 4} \left(\frac{x-4}{|x-4|} \right)$

- 2. $\lim_{x \to \frac{\pi^+}{2}} \tan(x)$
- 4. $\lim_{x \to 0} (5x^3 7x + 1)$

6.
$$\lim_{x \to -2} \left(\frac{x^2 + 8x + 12}{x^2 - x - 6} \right)$$

8. $\lim_{x \to 0^+} (|x| + 2x)$

Let
$$f(x) = \begin{cases} x^2 - 4 & \text{for } x \ge 1\\ 3x - 6 & 0 < x < 1\\ \frac{1}{x} & x < 0 \end{cases}$$

Answer the following questions. 9. $\lim_{x \to 1} f(x)$ 10. f(1)

11. Is the function continuous at x = 1, explain why or why not?

12.
$$\lim_{x \to 0} f(x)$$
 13. $f(0)$

14. Is the function continuous at x = 0, explain why or why not?

15. $\lim_{x \to -5} f(x)$ 16. f(-5)

17. Is the function continuous at -5, explain why or why not?

- 18. $\lim_{x \to 2} f(x)$ 19. f(2)
- 20. Is the function continuous at x = 2, explain why or why not?

21. Show that $x^3 = \sqrt{x} + 5$ has a solution in the interval (1,4). Hint: Use the Intermediate Value Theorem

Determine the points of discontinuity for the following functions. 22. $f(x) = \frac{\sin(x)}{\sqrt{x^2-9}}$ Determine the interval of continuity for the following functions.

23. $f(x) = \frac{\sqrt{x}}{x^2 - 3x + 2}$

Determine the equation of the line tangent to the curve for the following functions at the indicated points.

24.
$$f(x) = 3x^2$$
 at $P(1,3)$
25. $f(x) = x^3 - x$ at $P(1,0)$
26. $f(x) = \frac{1}{x}$ at $P(2, \frac{1}{2})$
27. $f(x) = \frac{2}{\sqrt{x}}$ at $P(4,1)$
28. $f(x) = \frac{5}{x^2}$ at $P(1,5)$