Binomial Probability Distribution

We use this distribution when dealing with a special type of experiment that involves counting success out of a fixed number of trials. Each trial is independent with a probability of success for a single trial.

Consider the experiment of having two children. The tree diagram is as follows.

This process assumes we have one child at a time and each trial is independent of one another. We let x = # of boys when having two children be our discrete random variable. We can create the following probability distribution by following our tree diagram.

х	P(x)
0	0.25
1	0.5
2	0.25

Sum

What if we want to compute probabilities for couples that want to have **4 children or more**? We can generalize this process by using the Binomial Probability Formula.

$$P(x) = nC_x p^x (1-p)^{n-x}$$

However, we must define each variable in our formula (n,x,p) and describe how this formula works. This formula is based on the concept of independent trials.

n is the number of trials.

x is the number of **successes** out of **n trials**.

p is the probability of a success for a **single trial**.

q = 1 - p is the complement of p.

The key to using the Binomial Probability Formulas is to consider a **single trial**.

Having Four Children

A couple plans on having 4 children, what's the probability of having:

- 1. No boys?
- 2. One boy?
- 3. Two boys?
- 4. Three boys?
- 5. Four boys?

In this case, the number of trials is 4, that is $m{n}=m{4}$

Let x be the number of boys (successes) so that our questions can be posed in terms of the following values of x.

No boys x = 0One boy x = 1Two boys x = 2Three boys x = 3Four boys x = 4

We need to know the value of p for this experiment. In order to determine this value we need to consider a **single trial** for having children.

We now have all the information (n, x, p) we need to answer a Binomial Probability Distribution question.

1. No boys

- n = 4x = 0
- p = 0.5

TI-83 or TI-84

- 1. Press **2nd** then **vars** to access DISTR (distributions) menu.
- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(4,0.5,0)

 $p(0) \approx 0.063$

2. One boy

$$n = 4$$

 $x = 1$
 $P(x) = nC_x p^x (1-p)^{n-x}$

p = 0.5

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(4,0.5,1)

p(1) = 0.25

3. Two boys

$$n = 4$$
$$x = 2$$

 $P(x) = nC_x p^x (1-p)^{n-x}$

p = 0.5

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(4,0.5,2)

p(2) = 0.375

4. Three boys

$$n = 4$$

 $x = 3$
 $n = 0.5$

 $P(x) = nC_x p^x (1-p)^{n-x}$

p = 0.5

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(4,0.5,3)

p(3) = 0.25

5. Four boys

$$n = 4$$

$$x = 4$$

$$P(x) = nC_x p^x (1)$$

$$p = 0.5$$

TI-83 or TI-84 Plus

1. Press **2**nd then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

 $(-p)^{n-x}$

binompdf(4,0.5,4)

 $p(4) \approx 0.063$

And of course my favorite questions.

6. At least one boy?

$$p(x \ge 1) = p(1) + p(2) + p(3) + p(4) = 1 - p(0)$$

 $p(x \ge 1) \approx 0.938$

7. More than one boy?

$$p(x > 1) = p(2) + p(3) + p(4)$$

8. Less than two boys?

$$p(x < 2) = p(0) + p(1)$$

9. More than three boys?

$$p(x > 3) = p(4)$$

 $p(x > 3) \approx 0.063$

10. Between one and three boys?

$$p(1 \le x \le 3) = p(1) + p(2) + p(3)$$

Fact- Just because we have two outcomes, that does not mean that they are equally likely.

 $p \neq q$

12 Question Multiple Choice Quiz

Every question has 5-possible answers (a-b-c-d-e). If you guess on every question, what's the probability of guess correct on:

- 11. No questions?
- 12. One question?
- 13. Two questions?
- 14. Three questions?
- 15. Four questions?

11. No questions?

$$n = 12 x = 0 p = 0.2$$

$$P(x) = nC_x p^x (1-p)^{n-x}$$

TI-83 or TI-84

1. Press **2**nd then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(12,0.2,0)

 $p(0) \approx 0.069$

12. One questions?

n = 12x = 1

$$P(x) = nC_x p^x (1-p)^{n-x}$$

p = 0.2

TI-83 or TI-84 Plus

- 1. Press **2nd** then **vars** to access DISTR (distributions) menu.
- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(12,0.2,1)

 $p(1) \approx 0.206$

13. Two questions?

$$n = 12 x = 2 p = 0.2$$

$$P(x) = nC_x p^x (1-p)^{n-x}$$

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(12,0.2,2)

 $p(2) \approx 0.283$

14. Three questions?

$$n = 12 x = 3 p = 0.2$$

$$P(x) = nC_x p^x (1-p)^{n-x}$$

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(12,0.2,3)

 $p(3) \approx 0.236$

15. Four questions?

$$n = 12 x = 4 p = 0.2$$

$$P(x) = nC_x p^x (1-p)^{n-x}$$

TI-83 or TI-84 Plus

1. Press **2nd** then **vars** to access DISTR (distributions) menu.

- 2. Select **binompdf** and click **enter**.
- 3. Enter the values for x, n, and p to complete the command **binompdf(n,p,x)** and press **enter**.

binompdf(12,0.2,4)

 $p(4) \approx 0.133$

And, my favorite questions.

16. At least one correct?

$$p(x \ge 1) = p(1) + p(2) + \dots + p(11) + p(12) = 1 - p(0)$$

 $p(x \ge 1) \approx 0.931$

17. At least two correct?

$$p(x \ge 2) = p(2) + p(3) + \cdots p(11) + p(12) = 1 - p(0) - p(1)$$

18. More than three correct?

$$p(x > 3) = p(4) + p(5) + \dots + p(11) + p(12) = 1 - p(0) - p(1) - p(2) - p(3)$$

$$p(x>3) \approx 0.205$$

19. Less than ten correct?

 $p(x < 10) = p(0) + p(1) + \dots + p(8) + p(9) = 1 - p(10) - p(11) - p(12)$

 $p(x < 10) \approx 1.000$

20. Between one and four correct?

$$p(1 \le x \le 4) = p(1) + p(2) + p(3) + p(4)$$

 $p(1 \le x \le 4) \approx 0.859$

This Binomial Porbability Distribution also has a way to compute its mean, variance, and standard deviation. In fact, these are the short cut formulas.

 $\begin{array}{ll} {\rm Mean} & \mu = np \\ \\ {\rm Variance} & \sigma^2 = np(1-p) \end{array}$ Standard Deviation $& \sigma = \sqrt{np(1-p)} \end{array}$

Determine the mean, variance, and standard deviation.

Four Children

Let x be the number of boys

х	p(x)
0	0.063
1	0.25
2	0.375
3	0.25
4	0.063
Sum	1.001

🖓 Texas Instruments	TI-84 Plus CE
NORMAL FLOAT AUTO REAL	DEGREE MP 🚺
4*.5	2
4*.5*(15)	£ .
4*.5*(15)	1.
	1.
statplot f1 tblset f2 format f3	calc f4 table f5
y= window zoom	trace graph

$$\mu = 2$$
$$\sigma^2 = 1$$
$$\sigma = 1$$

Left Handed (select 6 students at random)

Let x be the number of left handed students where the probability a person is left handed is 0.10 as 10% of the population is left handed.

х	p(x)
0	0.531441
1	0.354294
2	0.098415
3	0.01458
4	0.001215
5	0.000054
6	0.000001

1

TEXAS INSTRUMENTS	TI-84 Plus CE
6*.1	0.6
6*.1*(11)	0.54
	.7348469228
statplot f1 tblset f2 format	f3 calc f4 table f5
y= window zoom	1) trace graph

$$\mu = 0.6$$
$$\sigma^2 = 0.54$$
$$\sigma = 0.735$$