
The Graphical Approach to Limits 
 

 
 
Let’s note the following limits by looking at the graph of some wildly exotic function f. 
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This visual approach has its advantages; you don’t have to tedious calculations. However, it’s 

imperative that you are knowledgeable of graphs for various functions. 
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You try, Consider the following functions f and g; determine the following limits. 

 

lowing values 

This is the graph of a function f. 
 
 
 
 

 
This is the graph of a function h. 

 
This is the graph of a function g. 
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Properties of Limits 
(Limit Arithmetic) 

 
The following properties are also k s. They describe what you are allowed to 

o regarding limits. We will save the proofs of these laws for another day. 
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xamples- Let f and g be two functions such that the following is true. 
et  and  and and use properties of limits to calculate the 
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