East Los Angeles College Department of Mathematics Math 262 Test 3

Take Home Portion (20 points)

1. Evaluate the following improper integral

$$\int_0^\infty \frac{1}{x\sqrt{x^2-4}} dx$$

2. Show that $\int_{-\infty}^{\infty} \frac{1+x}{1+x^2} dx$ diverges

Let $F(s) = \int_0^\infty f(t)e^{-st} dt$ for a continuous function f(t) over $t \ge 0$ be a Laplace Transform for some function f. The Domain of F is the values of s such that our improper integral convergences. 3. If f(t) = t determine the domain of F(s).

4. If $f(t) = e^t$, determine the domain of F(s).

Determine the exact area of the surface by rotating the curve about the x-axis. 5. $x = \frac{1}{3}(y^2 + 2)^{3/2}$ over $1 \le x \le$

Determine the exact area of the surface by rotating the curve about the y-axis. 6. $x = \sqrt{4 - y^2}$ over $0 \le y \le 2$

7. Determine the length of the curve.

$$x = \frac{t}{1+t}$$
$$y = ln(1+t)$$
$$0 \le t \le 2$$

8. Find the area bounded by the parametric curve and the x-axis.

$$x = 1 + e^{t}$$
$$y = t - t^{2}$$
$$0 \le t \le 1$$