Particle Slowing Down and Speeding Up?

Graphing or Sign Analysis

Speeding Up

Particle is moving in the same direction as it is being pulled. $\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ have the same sign.

$$
v(t)>0 \text { and } a(t)>0 \text { or } v(t)<0 \text { and } a(t)<0
$$

Slowing Down

Particle is moving in the opposite direction as it is being pulled.
$\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ have the opposite sign.

$$
v(t)>0 \text { and } a(t)<0 \text { or } v(t)<0 \text { and } a(t)>0
$$

Determine the time t in which the particle is slowing down and speeding up by graphing the velocity function $v(t)$ and the acceleration function $a(t)$ on the same cartesian coordinate system or by using sign analysis on $v(t)$ and $a(t)$.

$$
s(t)=t^{3}-12 t^{2}+36 t \text { over } 0 \leq t \leq 8
$$

1. $s(t)=t^{3}-6 t^{2}+9 t$ for $t \geq 0$
2. $s(t)=\frac{t}{1+t^{2}}$ for $t \geq 0$
3. $s(t)=t^{3}-12 t+3$ for $t \geq 0$
4. $s(t)=t^{3}-4 t^{2}+3$ for $t \geq 0$
5. $s(t)=5 t^{3}-4 t^{2}+7$ for $t \geq 0$

Answers

1. $v(t)=3 t^{2}-12 t+9$ and $a(t)=6 t-12$ and $t \geq 0$

Slowing Down

$[0,1) \cup(2,3)$

$$
0 \leq t<1 \text { or } 2 \leq t \leq 3
$$

Speeding Up

$(1,2) \cup(3, \infty)$

$$
1 \leq t \leq 2 \text { or } t>3
$$

2. $v(t)=\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}}$ and $a(t)=-\frac{2 t\left(3-t^{2}\right)}{\left(1+t^{2}\right)^{3}}$ and $t \geq 0$

$$
\begin{gathered}
\text { Slowing Down } \\
(0,1) \cup(\sqrt{3}, \infty) \\
0<t<1 \text { or } t>\sqrt{3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Speeding Up } \\
& (1, \sqrt{3}) \\
& 1<t<\sqrt{3}
\end{aligned}
$$

3. $v(t)=3 t^{2}-12$ and $a(t)=6 t$ and $t \geq 0$

Slowing Down
$(0,2)$
$0<t<2$

Speeding Up
$(2, \infty)$
$t>2$
4. $v(t)=3 t^{2}-8 t$ and $a(t)=6 t-8$ and $t \geq 0$

Slowing Down
$(4 / 3,8 / 3)$
$4 / 3<t<8 / 3$

$$
\begin{gathered}
\text { Speeding Up } \\
(0,4 / 3) \cup(8 / 3, \infty) \\
0<t<4 / 3 \text { or } t>8 / 3
\end{gathered}
$$

5. $v(t)=15 t^{2}-8 t$ and $a(t)=30 t-8$ and $t \geq 0$

Slowing Down
$(4 / 15,8 / 15)$
$4 / 15<t<8 / 15$

$$
\begin{gathered}
\text { Speeding Up } \\
(0,4 / 15) \cup(8 / 15, \infty) \\
0<t<4 / 15 \text { or } t>8 / 15
\end{gathered}
$$

