Newton's Method

Powerful numerical approximation method that is used to solve equations.

What algebra can we use to solve $x^3 - x^2 = 1$?

Generally, there may be no algebra, or equations, that can be used to solve for x. What can we do? **Use Newton's Method**

Idea

Let f(r) = 0 where r is a root to the equation and make a guess for a solution to the equation x_1 . Note the tangent line L to the curve at $(x_1, f(x_1))$ and call the x-intercept x_2 The idea behind Newton's Method is that the tangent line approximates the curve f(x) and so it's x-intercept x_2 is "close" to the x-intercept r.

Formula for x_2

 $y - f(x_1) = f'(x_1)(x - x_1)$

The x-intercept for *L* is $(x_2, 0)$

 $0 - f(x_1) = f'(x_1)(x_2 - x_1)$ solving for x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
 assuming $f'(x_1) \neq 0$

Formula for x_3

 $y - f(x_2) = f'(x_2)(x - x_2)$

The x-intercept for L is $(x_3, 0)$

$$0 - f(x_2) = f'(x_2)(x_3 - x_2)$$
 solving for x_3

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$
 assuming $f'(x_2) \neq 0$

Keep repeating the process and obtain a **sequence** of approximations $x_1, x_2, x_3, x_4, \dots$ to the solution r. Generally, we have the nth approximation.

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 assuming $f'(x_{n-1}) \neq 0$

And, the numbers x_n get closer and closer to r as n gets big. That is, the **sequence** $x_1, x_2, x_3, x_4, \dots$ converges to r.

$$\lim_{n \to \infty} x_n = r$$

Caution- Newton's Method does not always work for your initial guess x_1 . If Newton's Method fails, make another guess for x_1 .

Example

Solve $x^3 - x^2 = 1$ using Newton's Method with $x_1 = 1$

Let $f(x) = x^3 - x^2 - 1$ so that the solution will be a root r for f(x).

 $f'(x) = 3x^2 - 2x$

nth general term

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 assuming $f'(x_{n-1}) \neq 0$

$$x_n = x_{n-1} - \frac{x_{n-1}^3 - x_{n-1}^2 - 1}{3x_{n-1}^2 - 2x_{n-1}}$$
 assuming $f'(x_{n-1}) \neq 0$

Let $x_1 = 1$

Then $x_2 = 2$ and $x_3 = 1.625$ and $x_4 \approx 1.4858$ and $x_5 \approx 1.4660$

 $x_6 \approx 1.4656$ and $x_7 \approx 1.4656$

$f(1.4656) \approx 0.0001$

Thus $r \approx 1.4656$ is a root to the function $f(x) = x^3 - x^2 - 1$

Use Newton's Method to solve the following equation with a given initial guess x_1 . Approximate to 4 decimal places.

- 1. $x^5 + 2 = 0$ with $x_1 = -1$ 2. $x^3 + 2x = 4$ with $x_1 = 1$

Use Newton's Method to solve the following equation when the root is in the given interval. Approximate to 6 decimal places.

3. $x^4 = 2\cos(x)$ with *r* in [0,2]

Use Newton's Method to find all solutions to the following equations. Approximate to 6 decimal places.

5.
$$\sqrt[3]{x} = x^2 - 1$$

4. $2x^3 - 6x^2 + 3x + 1 = 0$ with *r* in [2,3]

6. $\cos(x) = \sqrt{x}$

Answers

- 1. r = -1.1529
- 2. *r* = 1.1797
- 3. *r* = 1.013958
- 4. r = 2.224745
- 5. r = -0.471074 and r = 1.461070
- 6. r = 0.641714