Linear Correlation and Regression Notes

Bivariate Data

An ordered pair of data values (x,y) representing two quantities.

X is known as the independent variable, which can be controlled.

y is known as the dependent variable, which can't be controlled.

• Why? 9

We gather bivariate data so that we can determine whether there is a linear relationship between the quantities x and y.

Specifically, we want to determine whether a linear correlation exists between two variables x and y.

What do you mean by Linear?

y = mx + b

Algebra

The following sample of data values represent the amount of time studied (hours) and the corresponding grade (percent) earned for 6 students.

Χ	У
Hours Studied	Grade(Percent)
0	5
2	24
4	43
6	62
8	81
10	100

Algebra

Using the points (0,5) and (4,43) we have the following.

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{43 - 5}{4 - 0} = 9.5$ $y - y_1 = m(x - x_1)$ y - 5 = 9.5(x - 0)y - 5 = 9.5xy = 9.5x + 5

Scatter Plot

Study Time Versus Score

Why is it important to have a correlation?

We can use the equation that describes the data to predict!

y = 9.5x + 5 0

Prediction

If you study for 3 hours, what grade will you earn?

y = 9.5x + 5 $y = 9.5 \cdot 3 + 5$ y = 33.5

Prediction

If you study for 5 hours, what grade will you earn?

y = 9.5x + 5 $y = 9.5 \cdot 5 + 5$ y = 52.5

Prediction

If you study for 7 hours, what grade will you earn?

y = 9.5x + 5 $y = 9.5 \cdot 7 + 5$ y = 71.5 The following data values represent the amount of time studied (minutes) and the corresponding grade (percent) earned.

Χ	У
Min Studied	Grade (Percent)
20	40
40	45
50 Real	istic 70
60	76
80	92
100	95

Scatter Plot

Study Time Versus Score

Can we still use a linear equation to

Maybe?

We will have to determine wether their is a *linear correlation* between the variables x and y. And, if there is a linear correlation, we can to determine the *linear equation* that "Best Fits" our data.

Determine the linear correlation coefficient r.

Χ	У
Min Studied	Grade(Percent)
20	40
40	45
50	70
60	76
80	92
100	95

Note the sample size is 6.

	Α	В	С	D	E	F	G	^
1		х	У	ху	x^2	y^2		
2		20	40					
3		40	45					
4		50	70					
5		60	76					
6		80	92					
7		100	95					
8								
9	Sum							
10								
11								
12								
13								
14								
15								
16								~
H + H Sheet1 / Sheet2 / Sheet3 /							>	

Level of Significance

used to identify the cutoff (critical value) between results attributed to chance and results attributed to an actual relationship between the two variables. Using the 5% level of significance

r > critical value

0.95 > 0.811 0.95 > 0.811 The data gathered and assuming no linear correlation between x and y, there's a 5% chance

|r| > critical value

0.95 > 0.811

0.95 > 0.811It's unusual for r to satisfy this condition. There fore, we have a linear correlation

The "Best Fit Line"

y = mx + b

where

 $n\sum x^2 - (\sum x)^2$

 $= \overline{y} - m\overline{x}$

	Α	В	С	D	E	F	G	2
1		х	У	ху	x^2	y^2		
2		20	40	800	400	1600		
3		40	45	1800	1600	2025		
4		50	70	3500	2500	4900		
5		60	76	4560	3600	5776		
6		80	92	7360	6400	8464		
7		100	95	9500	10000	9025		
8								
9	Sum	350	418	27520	24500	31790		
10								
11	m							
12	b							
13								
14								
15								
16								~
	H Sheet1 / Sh	eet2 / Sheet3 /			<		2	

The "Best Fit Line"

$\hat{y} = 0.768x + 24.867$

aka, the Regression Line

Scatter Plot

Study Time Versus Score

Recall

Scatter Plot

Study Time Versus Score

Determine the linear correlation coefficient r.

Χ	У
Hours Studied	Grade(Percent)
0	5
2	24
4	43
6	62
8	81
10	100

Note the sample size is 6.

	А	В	С	D	E	F	G 🦷
1		х	У	ху	x^2	y^2	
2		0	5				
3		2	24				
4		4	43				
5		6	62				
6		8	81				
7		10	100				
8							
9	Sum						
10							
11	r						
12	m						
13	b						
14							
15							
16							~
	A > H Sheet1 / Sheet2 / Sheet3 /						

The "Best Fit Line" = 9.5x + 5

With the linear correlation coefficient r=1

Scatter Plots and

Correlation

•

2

Is there a linear correlation between the number of long distance calls made (monthly) and the cost (dollars)?

Determine whether a linear correlation exists at the 1% level of significance. If so, determine the "Best Fit Line".

Χ	У
# of calls	Cost (Dollars)
10	37
15	43
12	37
20	49
25	54
17	45

Note the sample size is 6.

	А	В	С	D	E	F	G	^
1		x	У	ху	x^2	y^2		
2		10	37					
3		15	43					
4		12	37					
5		20	49					
6		25	54					
7		17	45					
8								
9	Sum							
10								
11	r							
12	m							
13	b							
14								
15								
16								
	N Sheet1 / Sheet2 / Sheet3 /							

The data gathered and assuming no linear correlation between x and y, there's a 1% chance

r > critical value

|0.99| > 0.9170.99 > 0.917

It's unusual for r to satisfy this condition. There fore, we have a linear correlation

Scatter Plot

Calls versus Cost

Is there a linear correlation between the number of police officers patrolling an area and the number of muggings?

Determine whether a linear correlation exists at the 5% level of significance. If so, determine the "Best Fit Line".

Χ	У
Police Officers	Muggings
20	8
12	10
18	12
15	9
22	6
10	15
20	7
12	18

Note the sample size is 8.

	А	В	С	D	E	PLEXAS INSTRUMENTS TI-83
1		x	У	ху	x^2	44.16666667
2		10	37	370	100	44, 167-1, 214*16
3		15	43	645	225	5 24.136
4		12	37	444	144	
5		20	49	980	400	
6		25	54	1350	625	YE WADOW 200M TRACE GAAPH
7		17	45	765	289	OUT INS
8						
9	Sum	99	265	4554	1783	ALPHA X.L.D.A STAT
10						MATH MATRY PROM VANS CLEAR
11	r	0.99				2-1 SIN COS TAN
12	m	1.214				
13	b	24.136				
14						
15						NOL X LI Y LE 2 LA 6 MEN 11
16						
	Sheet1 / Sheet2 /	(Sheet4 / Sheet3 /			<	

The data gathered and assuming no linear correlation between x and y, there's a 5% chance

r > critical value |-0.782| > 0.707 0.782 > 0.707

It's unusual for r to satisfy this condition. There fore, we have a linear correlation

Scatter Plot Police Officers versus Muggings

Is there a linear correlation between the cumulative weight loss for a product over a period of weeks? Determine whether a linear correlation exists at the 1% level of significance. If so, determine the "Best Fit Line".

X	У
# of Weeks	Cumulative Weight Loss (pounds)
1	2
2	5
3	5
4	6
5	5
6	7
7	9

Note the sample size is 7.

	А	В	С	D	E	F	G		^
1		x	У	ху	x^2	y^2			
2		1	2						
3		2	5						
4		3	5						
5		4	6						
6		5	5						
7		6	7						
8		7	9						
9									
10	Sum								
11									
12	r								
13	m								
14	b								
15									
16									*
	N \ Sheet1 / Sheet2 /	(Sheet4) Sheet3 /			<			>	

The data gathered and assuming no linear correlation between x and y, there's a 1% chance

r > critical value

0.897 > 0.875 0.897 > 0.875

It's unusual for r to satisfy this condition. There fore, we have a linear correlation

Scatter Plot

Weeks versus Weight Loss

Is there a linear correlation between the age of "runners" and the miles run per week?

Determine whether a linear correlation exists at the 1% level of significance. If so, determine the "Best Fit Line".

Χ	У
Age	Miles Run (per week)
18	6
34	8
50	4
18	4
25	10
62	12
20	6

Note the sample size is 7.

	А	B	С	D	E	F	G	X	
1		х	У	ху	x^2	y^2			
2		18	6						
3		34	8						
4		50	4						
5		18	4						
6		25	10						
7		62	12						
8		20	6						
9									
10	Sum								
11									
12	r								
13	m								
14	b								
15		4							
16									
A + > M Sheet1 / Sheet2) Sheet4 / Sheet3 /									

The data gathered and assuming no linear correlation between x and y, there's a 1% chance

r > critical value

0.459 > 0.875

0.459 > 0.875 There is not sufficient evidence to support the conclusion of a linear correlation.

Scatter Plot

Age versus Miles Run

Age